

Kochi Green Hydrogen Valley Roadmap

Study by:

mec+

Supported by:

H2Uppp

International Hydrogen Ramp-up Program As a federally owned enterprise, GIZ supports the German Government in achieving its objectives in the field of international cooperation for sustainable development.

Published by:

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices: Bonn and Eschborn, Germany

Friedrich-Ebert-Allee 32 + 36 53113 Bonn, Deutschland T +49 228 44 60-0 F +49 228 44 60-17 66

Dag-Hammarskjöld-Weg 1-5 65760 Eschborn, Deutschland T +49 61 96 79-0 F +49 61 96 79-11 15 E info@giz.de I www.giz.de

Authors:

Mr. Sidharth Jain Ms. Swarnim Srivastava

Reviewers:

Ms. Diana Raine, Smart Hydrogen Consulting Mr. Neil Douglas, BVG Associates Mr. Tobias Winter, IGEF-SO Mr. Rolf Behrndt, Sr. Hydrogen Expert Mr. Kumar Abhishek, IGEF-SO Mr. Karan Arora, IGEF-SO

Acknowledgements:

Ministry of New and Renewable Energy Shri K.R Jyothilal, Add. Chief Secretary, Govt. of Kerala Mr. Narendra Nath Veluri, CEO, ANERT Mr. Gaurav Sharma

Team Members:

Ms. Pratishtha Mittal Mr. Govind CJ Mr. Abhigyan Borkotoki

Layout: peppermint werbung berlin gmbh, Berlin

The International Hydrogen Ramp-up Programme (H2Uppp) of the German Federal Ministry for Economic Affairs and Climate Action (BMWK) promotes projects and market development for green hydrogen in selected developing and emerging countries as part of the National Hydrogen Strategy.

New Delhi, September 2024

Foreword by MNRE

The Government of India is committed to achieve energy independence by the year 2047 and to attain net-zero emissions by 2070. In this context, Green Hydrogen is envisaged to play a pivotal role.

On January 4, 2023, the Government launched the National Green Hydrogen Mission with the overarching objective of positioning India as a Global Hub for the production, usage, and export of Green Hydrogen and its derivatives. The ambitious target set for 2030 is the annual production of at least 5 Million Metric Tons (MMT) of Green Hydrogen, with the potential to reach 10 MMT as export markets expand.

Recognizing the technical and logistical challenges inherent in transporting Hydrogen over long distances, the Mission envisages a cluster-based production and utilisation model to enhance the viability of Green Hydrogen projects. This approach would enable economies of scale and convergence of key infrastructure requirements in geographically proximate areas.

The National Green Hydrogen Mission is committed to identifying and developing regions capable of supporting large scale production and utilisation of Hydrogen in Green Hydrogen Hubs. Projects in these hubs will be planned in an integrated manner to allow pooling of resources and achievement of scale.

(Cont.)

Shri Ajay Yadav, IAS Joint Secretary, MNRE

Foreword by MNRE

The Mission also envisages the establishment of the required infrastructure for storage and delivery of Green Hydrogen and its derivatives. The development of port infrastructure to enable exports of Green Hydrogen derivatives, and pipelines to facilitate bulk transport of Green Hydrogen is of utmost importance to the Mission.

The roadmap for a Green Hydrogen valley in Kochi is a significant step towards achieving a shared infrastructure of the entire Hydrogen value chain including production, storage, transportation, and offtake. The roadmap provides guidance for the establishment of an interconnected Hydrogen ecosystem and suggests the development of a hub or valley in a phase wise manner.

The stakeholders under the Indo-German Green Hydrogen Task Force, including Government of Kerala, industry stakeholders and involved partners, have produced a comprehensive document which shall guide interested parties in creating a navigable path for the development of Green Hydrogen Hubs.

This roadmap shall serve as an inspiration for the analysis of further potential Green Hydrogen hubs and valleys across the country enabling an accelerated scale up of an international Green Hydrogen economy.

Ajay Yadav (IAS) Joint Secretary Green Hydrogen, International Relations & Climate Change Ministry of New and Renewable Energy (MNRE)

Foreword by Govt. of Kerala

As the global focus intensifies on reducing carbon emissions, Kerala is positioning itself as a leader in the green hydrogen sector, with ambitious investment plans and strategic initiatives. The state aims to become a hub for green hydrogen production, initially exploring the feasibility of exporting to Western markets, including Europe, Norway, and the United States.

Kerala's strategy encompasses establishing a sustainable green hydrogen ecosystem, amply supported by government undertakings like Bharat Petroleum Corporation Ltd, Cochin Shipyard, Kochi Metro Rail, and Cochin International Airport Ltd. The state's favourable conditions, such as low-impurity water bodies and advantageous terrain, make it an ideal location for cost-effective green hydrogen production.

Despite the current high costs of deploying green hydrogen fuel within the state, technological advancements over the next five to ten years are expected to make it more affordable. This transition is supported by proposed green hydrogen valleys in Thiruvananthapuram and Kochi, and preparations for the Vizhinjam project, marking significant steps towards several pilot projects. Additionally, the Kerala Government has received investment proposals from ReNew Power, Leap Green Energy, HLC Green Energy, and Enfinity Global, all expressing interest in exporting green ammonia from Kerala ports.

(Cont.)

Shri K.R. Jyothilal, IAS Add. Chief Secretary, Government of Kerala

Foreword by Govt. of Kerala

Kerala is also discussing projects in green hydrogen production, compression, storage, and refuelling facilities for hydrogen vehicles. Collaborations with academic and R&D institutes aim to explore innovations like production green hydrogen from agricultural biomass and other wastes. These initiatives are essential as Kerala strives to use green hydrogen for long-distance vehicles and water transport.

Kerala's Power Department is instrumental in promoting these green hydrogen pilots, with plans to develop green hydrogen hubs. The Power Department is committed to exploring project proposals, prioritising the execution of pilot production within a short span of time.

This insightful report by MEC Intelligence, supported by IGEF, offers vital insights for investor community, and serves as a strategic roadmap for businesses considering investments in the green hydrogen sector. In a field where data is often scarce, this report is expected to be a ready reference, explaining ground-level data and insights on green hydrogen users and their requirements. Significant efforts have been put into this research to demonstrate the various interconnections between renewable energy, green hydrogen, and decarbonisation. It evaluates the dynamic relationships between renewable energy systems and green hydrogen production, considering the economic and technical dimensions of transitioning to a sustainable energy future.

K. R. Jyothilal (IAS) Additional Chief Secretary, GAD and Power Government of Kerala

Foreword by ANERT

The international climate agenda prioritises the reduction of carbon emissions, which are a key factor in global warming. India aligns with this global commitment through initiatives such as the Strategic Interventions for Green Hydrogen Transition (SIGHT) incentive program and the Hydrogen Valley Innovation Cluster, placing Green Hydrogen at the forefront of its sustainable energy strategies.

Kerala is taking serious efforts to reduce its reliance on imported fuels and the need to procure electricity from other regions within India. The state's strategic shift to green hydrogen, complemented by a robust renewable energy policy, signifies a transition to achieving energy autonomy and strengthening security. Kerala actively seeks to maximise its renewable energy potential, majorly in floating solar power, wind, and biomass. Kerala aims to use green hydrogen to balance the fluctuations in solar and wind energy, supported by its installed capacity of over 1 GW in non-hydro renewable energy. The Kerala Green Hydrogen Policy, which is under development, reflects the state's proactive direction.

In its concerted effort to transition to cleaner energy, Kerala has set ambitious benchmarks such as achieving 100% renewable energy by 2040 and net-zero emissions by 2050, targets that exceed the nation's goals. Green hydrogen is crucial to realising these targets, potentially transforming the state's energy landscape.

(Cont.)

Shri Narendra Nath Veluri, IFS CEO, ANERT

Foreword by ANERT

Currently, Kerala's industrial players depend on grey hydrogen, which contributes to carbon emissions during production. Transitioning to green hydrogen represents a significant opportunity for these industries and other sectors, such as transportation, to reduce their environmental impact. The anticipated demand mandates for fertiliser and refinery units are expected to activate the domestic demand.

Integral to Kerala's green trajectory, this comprehensive report by MEC Intelligence, supported by GIZ, is intended to be an important element for governmental planning and an informative guide for potential investors.

With its excellent wind resources, strategic access to port, and proximity to busy shipping routes for bunkering opportunities, Kerala is poised to emerge as a nexus for green hydrogen derivative exports.

As global trends move decisively toward innovative energy systems, Kerala is pre-emptively aligning its renewable energy policies and laying the groundwork for a specialised green hydrogen ecosystem. The state is poised to take a leadership role in optimising the full spectrum of its renewable assets, positioning itself as a key player in the export of green hydrogen derivatives and an attractive hub for investment in the energy sector of the future.

Narendra Nath Veluri (IFS) CEO, ANERT

Reading Guide Report Overview

Objective and Methodology	 The objective of this report is to create a roadmap for the development of the 'Green Hydrogen Valley in Kochi' encompassing different green hydrogen value chain components The report has been prepared using a 'two-way approach' wherein research was carried out to understand the global hydrogen landscape and the emergence of valleys, understanding the commonalities and learnings from global valleys This global valley experiences was then overlaid on an in-depth understanding of Kochi's industrial & economic landscape and the opportunities identified through interactions with more than 20 stakeholders in Kerala including industries, mobility companies, ports, infrastructure companies, technology providers, associations and government stakeholders to develop the roadmap for a green hydrogen valley in Kochi
Structure of the Report	 The report is divided into 5 sections: Global H₂ Landscape and valley Focus Kochi Hydrogen Valley – Summary Kochi Hydrogen Valley – Design Choices Kochi Hydrogen Valley – Background Information Kochi Hydrogen Valley – Global Valley Profiles Section 1 summarizes the global hydrogen landscapes and learnings from global green hydrogen valleys Section 2 summarizes the development of the Kochi Green Hydrogen Valley Section 3 talks about the design choices that were made while choosing the valley specifics presented in Section 2 Section 4 gives the background information that is used in determining the design choices and provides deep dives into sectors, resource availability and supply side economics Section 5 deep dives into the 5 selected valleys from which the learnings are summarized and presented in section 1 The valley is envisioned in a phase wise manner with specific objectives for the 3 phases. Two scenarios (base and aggressive) are also considered of which base case is selected for the valley development (as explained in Section 2)

Reading Guide

Sectional Overview

Section	Objective	
Global H2 Landscape and valley Focus	Section 1 talks about the global hydrogen landscape and how green hydrogen valleys are emerging in different geographies of the world. It also gives a summary of the lessons learned from the 5 global valleys that were studied for the purpose of this report	
Kochi Hydrogen Valley – Summary	Section 2 gives an overall summary of the Kerala Valley; the vision for the valley, the offtake potential, supply requirements to meet demand, investment requirement, governance model and socioeconomic impact of the valley	
Kochi Hydrogen Valley – Design Choices	Section 3 delves into valley design choices; anchor sectors selection, summary of assessments in various sectors (economic cases, regulatory support, technology readiness, and offtake willingness). Possible valley configurations, selection rationale, existing premiums, viability gaps, and factors influencing landed costs	
Kochi Hydrogen Valley – Background Information	Section 4 extensively examines each of the 6 anchor sectors, exploring landscape, technology readiness, economic cases, landed costs/TCOs, regulations, offtake willingness, and possibilities for green hydrogen adoption, Kerala's resource potential and the supply-side economics of green hydrogen/ammonia.	
Kochi Hydrogen Valley – Global Valley Profiles	Section 5 deep-dives into the 5 global green hydrogen valleys that were studied in-depth to understand the functioning of green hydrogen valleys in terms of the archetype, investments, governance models, demand & supply scenarios and stakeholder engagement	
Appendix	This section provides the methodologies for socio-economic impact, infrastructure costs considered, land requirements, industries mapping and summaries of stakeholder interactions	

10

Term	Definition			
Aggressive Case	Aggressive case refers to a scenario where expectations for adoptions are more optimistic and rapid compared to the base case. It represents a more ambitious outlook, projecting faster and larger-scale adoption of a technology but needs proactive involvement of all stakeholders to achieve the goal			
Base case	Base case refers to a conservative scenario anticipating slower adoption compared to the global trend. It represents a cautious outlook, outlining small yet achievable cases amid expectations of lagging adoptions. The term serves as a realistic baseline for forecasting, considering potential challenges in the adoption process			
Blue Hydrogen	Hydrogen produced via natural gas or coal gasification combined with carbon capture storage (CCS) or carbon capture use (CCU) technologies to reduce carbon emissions			
Carbon Abatement	Carbon Abatement refers to the amount of carbon that is not emitted/reduced as a result of use of clean energy sources like green hydrogen			
Carbon Tax	A carbon tax is a type of penalty that businesses must pay for excessive greenhouse gas emissions			
Coastal Waterways	Coastal waterways (here) are the navigable routes through the sea that goes close to the coast of the country. Coastal shipping is the transport of cargo as a business and shipping within 20 nautical miles of the coastline			
Depleted Gas Fields	A depleted gas field refers to a natural gas reservoir that has undergone significant extraction or production, resulting in a substantial reduction in the amount of recoverable natural gas. It is an option for hydrogen storage			
Electrolysis	Electrolysis is the process of using electricity to split water into hydrogen and oxygen			
Energy Banking	Energy banking is an arrangement where the surplus energy generated is banked with the grid. This surplus energy known as banked energy is then supplied back during periods of low RE generation			
FCEV	A Hydrogen Fuel Cell Electric Vehicle (FCEV) is a type of electric vehicle that uses a hydrogen fuel cell to generate electricity on board for powering an electric motor. Unlike traditional internal combustion engine vehicles, FCEVs do not burn hydrogen; instead, they chemically react hydrogen with oxygen from the air in a fuel cell to produce electricity, water, and heat			

Source: Websites; Research Articles; MEC+ analysis

11

Term	Definition
Green Hydrogen	Green Hydrogen is hydrogen produced using renewable energy, including, but not limited to, production through electrolysis or conversion of biomass. Renewable energy also includes such electricity generated from renewable sources which is stored in an energy storage system or banked with the grid in accordance with applicable regulations
Green Hydrogen Derivatives	Green Hydrogen derivatives are products like green ammonia, methanol etc that are produced using green hydrogen
Green Hydrogen Valley	A defined geographic area where various hydrogen applications are integrated into a unified ecosystem covering the entire hydrogen value chain, from production to end-use, with the aim of making projects more economically viable. These valleys create networks of producers, consumers, and local infrastructure, accelerating the use of hydrogen.
Grey Hydrogen	Hydrogen produced via natural gas through the process of steam methane reformation
GVA	GVA (here) is the value added as a result of the economic activities happening in the valley due to the production and consumption of green hydrogen
HICE	A Hydrogen Internal Combustion Engine (HICE) is a type of internal combustion engine specifically designed to run on hydrogen as a fuel. It follows the same principles as a traditional internal combustion engine but is configured to handle the unique characteristics of hydrogen as a fuel
Inland Waterways	Inland waterways are the rivers, lakes and canals or narrow channels. These waterways are used for transportation of goods and passengers is called inland water transport
Innovation Cluster	Innovation Cluster (here) refers to the sectors that have limited contribution to the green hydrogen demand currently but may have the potential to scale in the future. These are fringe sectors contributing less than 10% of the total valley demand
ISTS Grid	ISTS Grid is a system for the conveyance of electricity by means of a main transmission line from the territory of one state to another
Jobs	Jobs (here) refer to the number of jobs created by the valley for a specific period of time. This could vary from 6 months to 2 years for one-time jobs like construction to lifecycle of the asset developed for the operational and maintenance jobs

Source: Websites; Research Articles; MEC+ analysis

Term	Definition			
Landed Cost	Landed cost refers to the total delivered cost including production, transportation, storage and dispensing costs			
LOHC	Liquid organic hydrogen carriers are organic compounds that can absorb and release hydrogen through chemical reactions			
NH ₃ conversion Infrastructure	NH ₃ conversion infrastructure refers to the systems required to convert green hydrogen into ammonia			
Phase I	Phase I is the preparatory phase. This phase would focus on capacity building, stakeholder engagement and development of standards. Comprehensive studies will be carried out in this stage to ascertain the feasibility of green hydrogen in the selected sectors.			
Phase II	Phase II would be the pilot phase. Based on the studies in Phase I, pilots will be set up in phase II to evaluate the production and consumption operations. This phase will help address the operational challenges			
Phase III	Phase III will the scale-up phase. Based on the success of pilots in phase II and the learnings, the valley will be scaled up to the envisioned size. The select industries based on the success of the pilots will move for scaled adoption of green hydrogen			
Price Premium	The additional price that the consumer has to pay for substituting the current fuel/feedstock with green hydrogen			
Restricted Banking	Banking of energy with the distribution company considering 1000 hours of grid banking			
Rock Cavern	Rock caverns are mined underground cavities in solid rock deep underground. It is an option for hydrogen storage			
RTC RE	Round the Clock RE combines Variable Energy with stable complementary power from conventional sources such as thermal, hydro etc. and/or from Energy Storage Systems to provide 24/7 power supply			
Salt Cavern	Salt caverns are artificial cavities in underground salt formations which are created by the controlled dissolution of the rock salt by the injection of water during the solution mining process. It is an option for hydrogen storage			
Section 8 Company	A Section 8 Company is a type of non-profit organization in India that is established for the promotion of charitable or social causes such as education, art, science, religion, or any other charitable objective. This type of company is governed by the Companies Act, 2013 and is registered under Section 8 of the Act			

Source: Websites; Research Articles; MEC+ analysis

Term	Definition
Sector Coupling	Sector coupling refers to the process of aggregating the needs of two or more sectors to provide a common solution, this could be a common infrastructure or an aggregation of demand (for RE/H ₂) of sectors and provision of the same from a common source
Socioeconomic Benefits	Socioeconomic benefits (here) refer to the benefits offered to the region in the form of social and economic benefits like creation of jobs, value addition to the economy and the reduction of emissions leading to better health and well being
Solid Metal Hydride	Solid metal hydrides are compounds formed by the combination of metals with hydrogen, resulting in a solid substance. These materials are known for their ability to absorb and release hydrogen gas, making them valuable for hydrogen storage applications
Stranded Assets	Stranded assets are those that lose value or turn into liabilities before the end of their expected economic life due to factors within or outside the control of the organization
Total Cost of Ownership	Total cost of ownership (TCO) includes the purchase price of a particular asset, plus operating costs, over the asset's life spa
TRL	Technology Readiness Levels (TRL) are a type of measurement system used to assess the maturity level of a particular technology. With TRL 1 being the basic research level to TRL 9 meaning it is a proven technology and the system is ready for full commercial deployment
Trunk Infrastructure	Trunk infrastructure (here) refers to the basic infrastructural requirement for the functioning of the hydrogen valley including the pipelines, storage, refuelling infrastructure and assets like buses and boats
Unrestricted Banking	Banking of energy with the distribution company considering 4000+ hours of grid banking

Source: Websites; Research Articles; MEC+ analysis

Abbreviations

(|/|||)

ANERT: Agency for New and Renewable Energy Research and Technology APAC: Asia-Pacific ASU: Air Separation Unit AWE: Alkaline Water Electrolyser BAU: Business as Usual **BNEF:** Bloomberg New Energy Finance Limited BOO: Build Own and Operate **BPCL:** Bharat Petroleum Corporation Limited CAGR: Compounded Annual Growth Rate **CAPEX:** Capital expenditure **CDAC:** Centre for Development of Advanced Computing **CEA:** Central Electricity Authority CGD: City gas distribution CO2: Carbon di-oxide COB: Chairman of the Board Cr: Crore CSIR: Council of Scientific & Industrial Research **CSL:** Cochin Shipyard Limited **CSS:** Cross-Subsidy Surcharges **CUF:** Capacity Utilisation Factor DAP: Di-Ammonium Phosphate **DEVEX:** Development Expenditure DOE: Department of Energy, USA **DPR:** Detailed Project Reports

DST, India: Department of Science and Technology, India DST, South Africa: Department of Science and Technology, SA EBITDA: Earnings Before Interest, Taxes, Depreciation and Amortization **EPC:** Engineering, Procurement and Construction ESG: Environmental. Social and Governance EU: European Union EV: Electric Vehicles **EVE:** Energy Agency of Basque **EXIM:** Export-Import FACT: Fertilizers and Chemicals Travancore Limited FCEV: Fuel Cell Electric Vehicle FCH-JU: Fuel Cell Hydrogen Joint Undertaking FCRA: Foreign Contribution Regulation Act FERA: Foreign Exchange Regulation Act FID: Final Investment Decision GH2: Green Hydrogen GHG: Green House Gases GHIC: Green Hydrogen Industrial Cluster GJ: Gujarat **GNH₃:** Gaseous Ammonia Gol: Government of India GW: Giga-Watt H₂: Hydrogen HAC: Hazardous Area Classification

15

Abbreviations

(||/|||)

HAZID: Hazard Identification Study **HAZOP:** Hazard and operability study HDV: Heavy-duty Vehicles HFCP: Hydrogen Fuel Cell Partnership HICE: Hydrogen Internal combustion engine HOCL: Hindustan Organic Chemicals Limited HP: Himachal Pradesh **HSE:** Health, Safety and Environment HV Transformer: High Voltage Transformer IEA: International Energy Agency **INR:** Indian Rupee **IOCL:** Indian Oil Corporation Limited **IPCEI:** Important Project of Common European Interests **IRENA:** International Renewable Energy Agency **ISO:** International Organization for Standardization **ISTS:** Interstate Transmission System IWAI: Inland Waterways Authority of India JV: Joint Ventures KINFRA: Kerala Industrial Infrastructure development Corporation KL: Kerala KMB: Kerala Maritime Board KMML: Kerala Metals and Minerals I td KMRL: Kochi Metro Rail Limited **KPACT:** Kottayam Port and Container Terminal KSINC: Kerala Shipping and Inland Navigation Corporation Ltd KSTRC: Kerala State Road Transport Corporation

KSWTD: Kerala State Water Transport Department kTPA: Kilo tons per Annum KWA: Kerala Water Authority kWh: Kilowatt hour KWML: Kerala Water Metro Limited kWp: Kilowatt peak LH₂: Liquid Hydrogen LNH₃: Liquid Ammonia LOI: Letter of Intent LPG: Liquified Petroleum Gas LTO Battery: Lithium-titanate Battery MH: Maharashtra MLD: Million Liters per day **MLI:** Member Lending Institutions MMBtu: Metric Million British Thermal Unit MMT: Metric Million tons MNRE: Ministry of New and Renewable Energy MoU: Memorandum of Understanding MP: Madhya Pradesh MT: Million tons MW: Megawatt N₂: Nitrogen Gas **NEC:** New Energy Coalition NGHM: National Green Hydrogen Mission NGO: Non-Governmental Organization NH₃: Ammonia

16

Source: MEC+ analysis

Abbreviations

(|||/|||)

NIWE: National Institute of Wind Energy NPK: Nitrogen, Phosphorus and Potassium NZE: Net Zero Emission **O&M:** Operation and Maintenance O₂: Oxygen Gas **OD:** Odisha **OPEX:** Operational Expenditure **OSW:** Offshore Wind PAT: Perform Achieve and Trade Scheme **PAWE:** Pressurized Alkaline Water Electrolyser PB: Punjab PDPP: Propylene Derivatives Petrochemicals Project PEM: Proton Exchange Membrane PGCIL: Power Grid Corporation of India PLI: Production Linked Incentives PMU: Project management Unit **PV:** Photovoltaic **QRA:** Quantitative risk assessment R&D: Research and Development **RE:** Renewable Energy **REC:** Rural Electrification Corporation Limited **RE-RTC:** Round the Clock -Renewable Energy RJ: Rajasthan ROW: Right of Way RRF: Recovery and Resilience Facility part of EU economic recovery fund SEC: Specific Energy Consumption

SECI: Solar Energy Corporation of India SHP: Small Hydrogen Power SIGHT Scheme: Strategic Interventions for Green Hydrogen Transition SMR: Steam Methane Reforming SNN: Northern Netherlands Alliance Sox/Nox: Sulphur Oxide/Nitrous Oxide SPV: Special Purpose Vehicle TCO: Total Cost of Ownership TPA: tons per annum TRL: Technology readiness levels UKTL: Udupi Kasargod Transmission Limited **UNIDO:** United Nations Industrial Development Organization USD: United State Dollar VGF: Viability Gap Funding WACC: Weighted Average Cost of Capital WCC: West Coast Canal

17

Kochi industries can potentially consume 120 kTPA of Green Hydrogen but require a coordination agency to realise the potential

- Kochi is a major port city on the Malabar Coast of India and its industrial base includes a refinery, fertiliser, ship-yard, port, container terminal, LNG terminal and airport along with other industries
- The presence of port and heavy industries can create aggregated demand up to nearly 120 kilo tons per annum of Green Hydrogen. This translates to a demand of nearly 1 GW of electrolysers and associated infrastructure in renewable energy (5GW), grid infra (ISTS s/s), storage, pipeline (27 km), and end use (including buses, boats, refuelling infrastructure)
- 90% of the current existing demand is concentrated within refinery and fertiliser
- However, each sector is represented by only 1 player with limited coordination amongst them due to different business models and use cases
- There are no set plans and timelines for GH₂ adoption amongst these players due to high costs, already sunk-in infra costs, and no clear plans for decarbonisation
- Establish an export-oriented unit to cater to additional markets due to presence of water and development of port infrastructure in the green hydrogen valley

Exhibit 1: Relative attractiveness among players for adopting Green Hydrogen

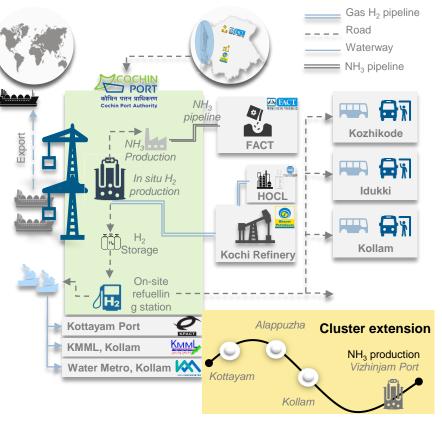
University University Madium Franceshie

Sector	Use case	Current Grey H ₂ Demand (kTPA)	Premiums** INR/kg & INR/kr	n (bus & boats)	Regulatory support	Technology readiness	Off taker willingness	Criticality to valley
			2025	<u>2040</u>				
Refinery	Direct substitute	51	301	12	Medium - High	Medium	2.6	٩
Fertilizer	Direct substitute	46	68	19	Medium	Low	1.8	J
Roadways	Fuel change/ new tech	13	EV: 15 to 24 Diesel: 18 to 27	EV: -7 to -1 Diesel: -18 to -12	Low	Medium	1.6	\bullet
Waterways	Fuel change/ new tech	2	EV: 117	EV: 18	Medium - High	Medium	1.8	O
Chemicals	Direct substitute	0.4	306	14	Very low	Medium	1.4	٢
Export	New area	40	NA	NA	Medium	To be tested	2	9

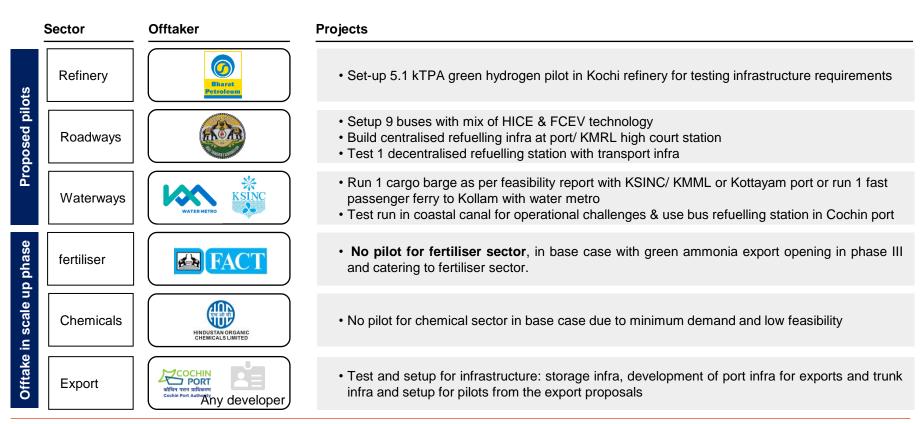
ote: TCO case for roadways is a one-off niche case for 400 km and fleet of 10 buses

Demand is around refinery and fertiliser, all sectors require coordination, infra development, technology reliability and manpower training

Parameters	Opportunities	Challenges
Refinery	 Direct use case of 51 kTPA going to 70 kTPA by 2040 Economic case by 2030 vs Blue H2 Technology availability 	 Already existing contract with AirProducts No govt targets at refinery level / no feedstock emission reduction targets Bina refinery is currently being considered as hub
Fertiliser	 Ammonia use case of 281 kTPA today – 46 kTPA of GH₂ going to 70 kTPA by 2030 Uses imported LNG (as do all fertiliser companies) 	 Process integration with NPK and DAP is untested Minimum size of ammonia plant is 200 kTPA and hence requires significant decision and infrastructure Economic case for GH₂ most likely by 2035
Road Transport	 1000 buses on long routes can anchor 13 kTPA GH₂ Cost comparable to Diesel for 400 km round trip by 2030 but Electric Vehicles are cheaper Owned by State Govt and hence quick to act 	 CAPEX, and OPEX on maintenance for refuelling infra and offtake to be supported by the government High costs of H₂ initially – should not be locked in
Marine Transport	 Local ship-yard & multiple shipping routes – local, inland and international provide unparallel base for adoption State Govt plans to increase marine traffic and go net ze TCO against EV boats for high distance routes can exist 	opposition by road transport operators – however, pilots can lead to higher growth
Export Potential	 Port is on the east coast and competes with Colombo, Singapore, Dubai and Malaysian ports for transshipment traffic Existing proposals from leading IPP to set up H2 base 	 High level of subsidies requested by the IPPs Current financial conditions of the government agencies is poor


Offtake is limited till 2025, pilots will be required to realise and build the capacity in 2030

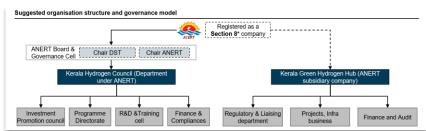
- There are no signs of offtake until 2025, with pilot programs scheduled between 2025 and 2027. A feasible timeline for domestic offtake is anticipated around 2030
- Local players need time to develop decarbonisation plans, evaluate feasibility, and assess the impact on existing contracts
- There is an absence in sector coupling due to planning done in silos and individually
- There is limited capacity to approve, and process permits for hydrogen, develop port infrastructure, and enhance renewable energy infrastructure in the state bodies
- Financial and budgeting activities are primarily concentrated on securing budgetary approvals from the Kerala government, with some funds available from MNRE, but lacking international grants
- In the current setup, skill and certification development face notable challenges
- No processes for standards and certifications exist


- A phase wise approach to realise the potential of the green hydrogen valley has been suggested
- The first phase is focussed towards creating a supportive environment through policies, stakeholder engagement, demand aggregation, etc.
 - During 2024-25, focus will be to ensure feasibility assessments, stakeholder engagement, and sector coupling through RE, and coordination with international agencies and valleys
- The second phase is focussed towards conducting pilots studied in techno-commercial feasibilities to test the infrastructural and offtake development
 - During 2026-30. focus will be on set up of pilot projects, development of shared infrastructure, development of funding pipeline for CAPEX from state/ central/ other funds
- The third phase is focussed towards creating a green hydrogen hub by upscaling the pilots to scaled up offtake and creating a centralised demand supply structure
 - During 2030-40, create infrastructure for scaling up of GH2

A centralised Green Hydrogen facility at the port supported with pipelines serving nearby industries is suggested

- The industries in Kochi are in proximity and can be served from a single central location producing green hydrogen, also served by transport and storage infrastructure
- A centralised electrolyser to be placed at the port infrastructure in order to supply fuel
- Further, the configurations require a refuelling infrastructure setup for the boats and buses as well as pipelines running from Port to BPCL refinery and FACT fertiliser unit
- The cluster can be expanded to Vizhinjam port connecting industries in Kottayam, Alappuzha, Kollam to an NH₃ production unit at Vizhinjam
- Total cumulative funding needed from government will be INR ~731 Crores to be spent on supporting techno-commercial assessments (INR 45 Crores) transmission infrastructure (INR 351 Crores), pipeline and refuelling infrastructure (INR 264 Crores), offtake infrastructure (INR 70 Crores)
- Total Green H2 subsidy needed to bridge the viability gap ranges as INR 1,055 and INR 2,908 crores in phase 2 and 3 respectively
- Total capex investments in the valley amount to INR 18,542 Crore. Out of which INR 4,166 Crore will be spent on electrolyser and ammonia plants and INR 12,687 Crore on Renewable Energy set up
- Around 3,600 jobs can be created in the green hydrogen valley cumulatively with an abatement of 0.49 Mt CO2_e

Pilots to be realised to test the feasibility for infrastructure and cost


Governance of valley will require adopting best practices from globally successful models and immediate capacity building within Kochi, Kerala

- Across 80+ valleys, 3 major models for governance structures exist working group model, project specific model and association model wherein
 international experience should be captured by Kochi
- For the Kochi valley, working group model for governance structure has been developed due to presence of public sector companies
- The working group model follows a top-down vision of green hydrogen valley wherein the government plays the key role of coordinator
- The Department of Science and Technology (DST) has approved Kochi Hydrogen Valley Innovation Cluster's (HVIC) proposal for financial support.
- DST has designated RE nodal agencies as the nodal agency for HVIC. ANERT is proposed to play the role of the coordination agency as it is already the nodal agency for RE in the state.
- · ANERT is proposed to undertake two set of activities -
 - Working with national, local and international stakeholders to develop projects, bring funds, R&D and to meet compliance requirements
 - Development of infra required to support the Green H2 adoption
- The development of infrastructure is proposed to be undertaken in a separate company as a subsidiary. Successful models exist in international valleys that have been able to monetise such development
- The coordination and partnership should be done via a department within ANERT herein referred to as a council
- The council to collaborate with international valleys and programs in Germany and other European countries

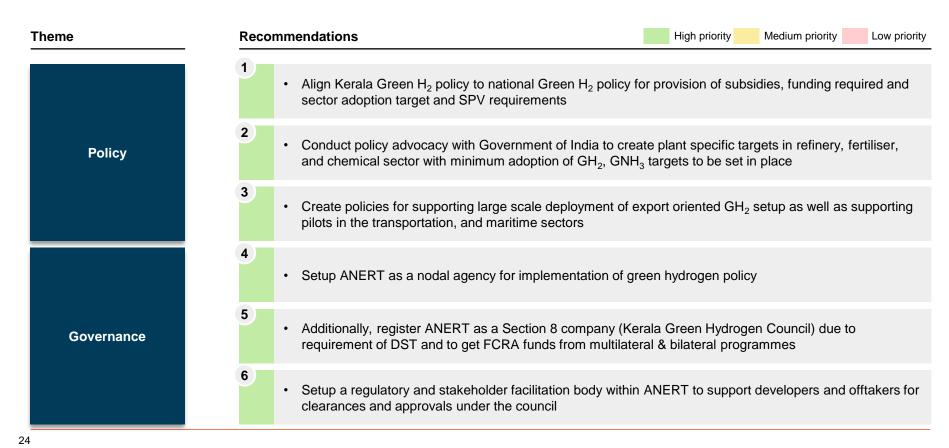
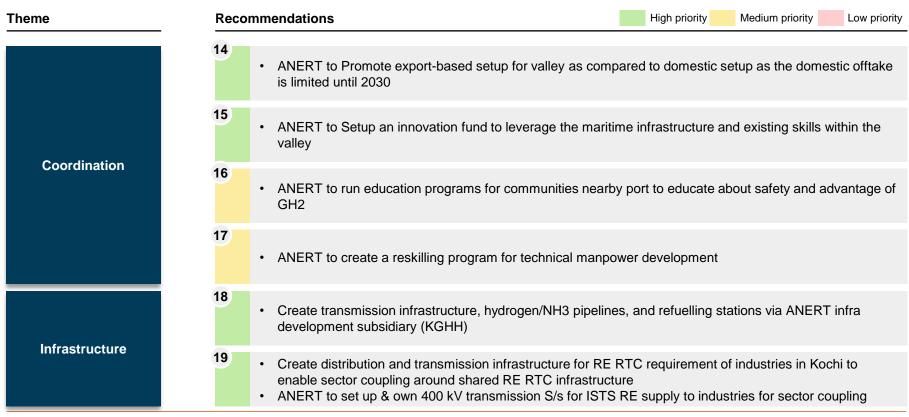
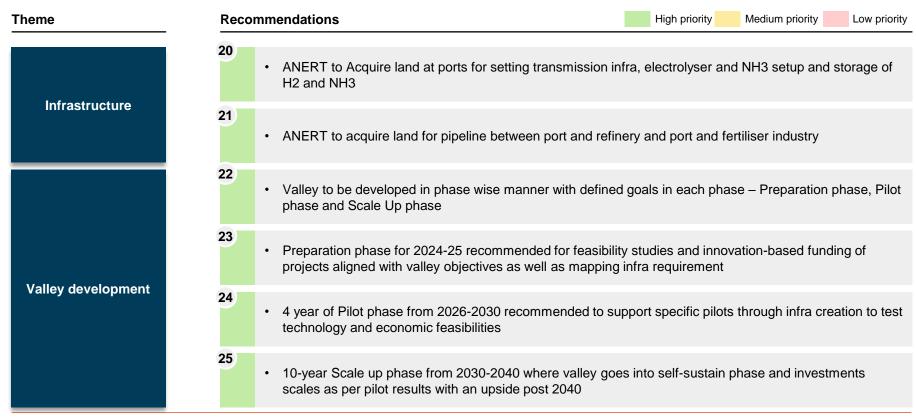

Exhibit 1: Global valleys

Exhibit 2: Green Hydrogen governance structure

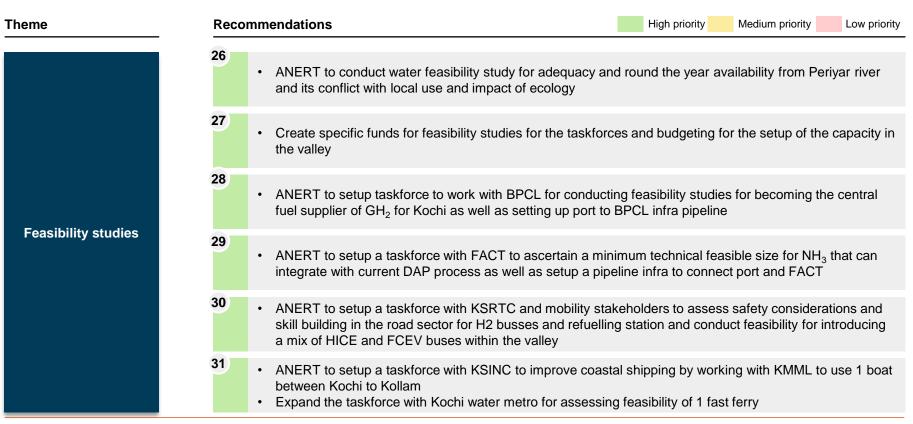
Recommendations (1/7)

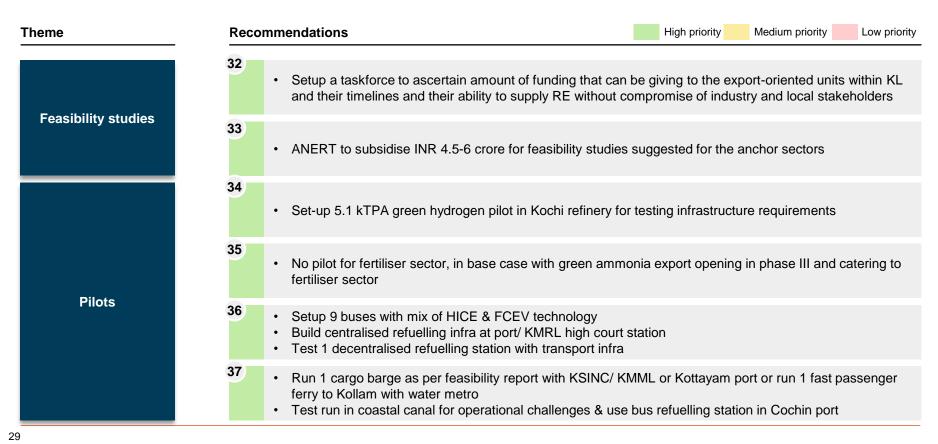


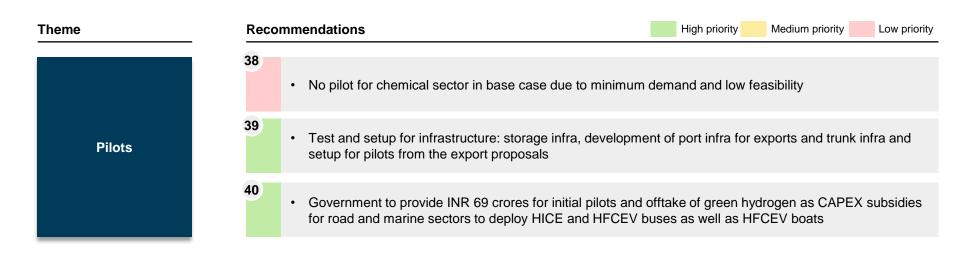
Recommendations (2/7)


Theme	Recommendations High priority Medium priority Low priority
	 Create a subsidiary company within ANERT (Kerala Green Hydrogen Hub) for developing and owning shared infrastructure in the valley
Governance	 Allow ANERT to raise finance through this subsidiary (Kerala Green Hydrogen Hub) for development of infrastructure
	 Setup GH2 cluster partnerships via ANERT with existing GH2 valleys in Germany and other European countries along with important national stakeholders to increase efficiency, reliability, quantity and quality of green hydrogen solutions, facilitate trade and foster growth in sectors within the valley
	 The council can reap significant benefits through collaboration of an Indo-German cluster partnership, thereby harnessing the technical expertise derived from the successful implementation of hydrogen clusters in Europe
Coordination	• Improve capacity at ANERT to develop technical standards and coordinate the R&D ecosystem in India
	 Setup a facilitation office within ANERT for aggregating demand, designing of pilots, and for decentralised hydrogen project funding Setup a PMO within ANERT to monitor the progress of the GH2 policy
	 Create working groups and task forces with public and private players in H2 valley to allocate funds for valley development

25


Recommendations (3/7)


Recommendations (4/7)


Recommendations (5/7)

Recommendations (6/7)

Recommendations (7/7)

30

Table of Content

Global H₂ Landscape and Valley Focus

Kochi Hydrogen Valley - Summary

Kochi Hydrogen Valley - Design Choices

Kochi Hydrogen Valley - Background Information

Kochi Hydrogen Valley - Global Valley Profiles

Appendix

Sectional Summary

Global Hydrogen Landscape and Valley Focus

 A valley is a defined geographic area where various hydrogen applications are integrated into a unified ecosystem covering the entire hydrogen value chain

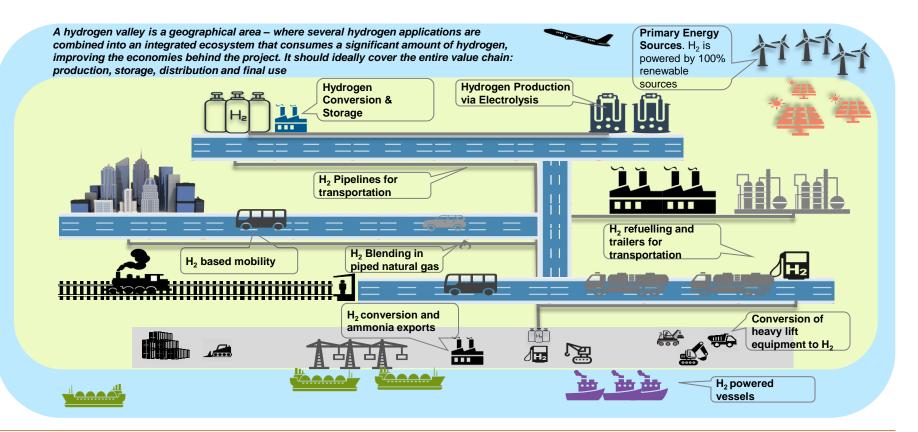
· A green hydrogen value chain typically consists of 4 stages - production, storage, transportation and offtake

 Hydrogen valleys provide an environment for demonstration projects to be carried out across the entire value chain, thus enabling a hydrogen ecosystem

 Green Hydrogen has been gaining global momentum with nearly 41 countries actively working on their green hydrogen strategy

Globally 80+ valleys have been recognized with majority concentration in EU

 Two distinct archetypes are seen globally, valleys that leverage their abundant RE resources and valleys that leverage their existing infrastructure

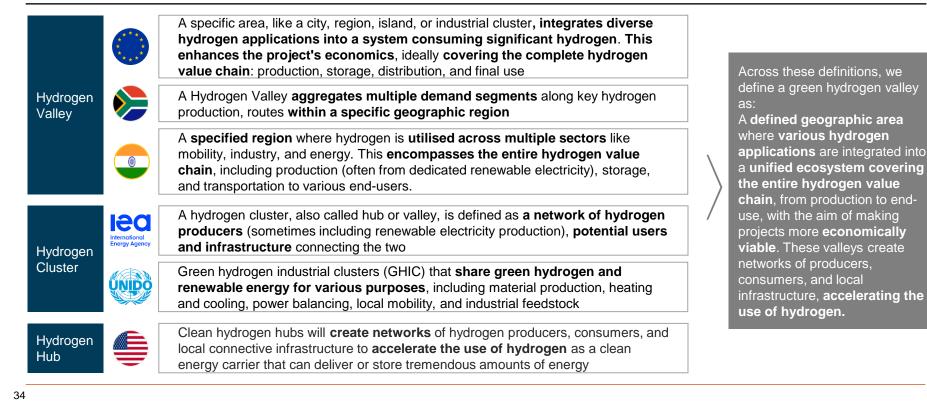

 In governance, valleys are emerging with association model (high private participation), project specific model (government facilitates and private players execute) and working group model (high govt. participation)

Across the valleys, govt. have actively supported in demand aggregation, supply side incentives and in providing
public and private funding

Global H₂ Landscape and valley Focus

A Hydrogen Valley

combines multiple end-use sectors in a geographical location through shared use of hydrogen and/or hydrogen derivatives



33 Note: Illustration inspiration to Ava Horton/Revolve Source: <u>Revolve;</u> MEC+ analysis

The term hydrogen valley/cluster/hub are used interchangeably

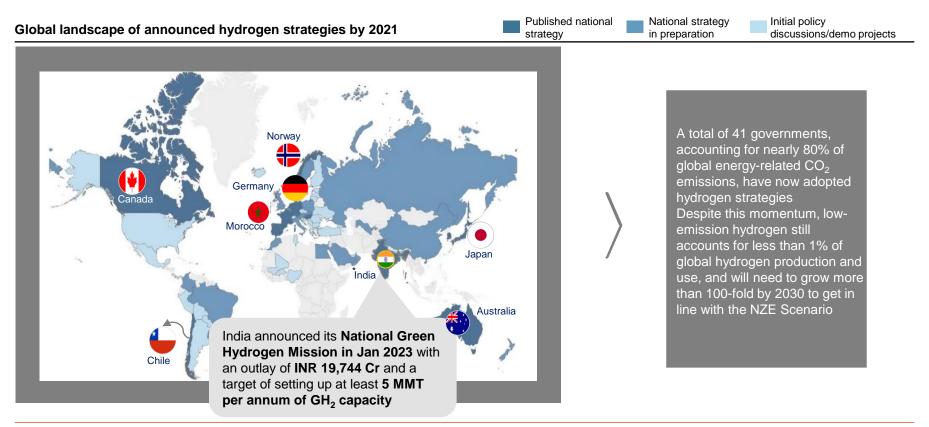
to define a hydrogen ecosystem across multilateral institutes and country/agencies

Emerging definition of valleys, clusters and hubs across multilateral bodies and countries

The objective of a Green Hydrogen Valley

is to scale up production through demand aggregation and to leverage optimized cost of fuel for all participants in the ecosystem

Purpose of Green Hydrogen Valley


Decarbonisation Goals	Parameter	Description	
 Several countries have undertaken pledges to achieve net zero by mid- century or sooner 	Market	Government promotes the development of local hydrogen markets for supply and off-	
 One of the key pillars of decarbonisation is electrification, the use of low- emission electricity in place of fossil fuels 	Creation	takers through mandates, and policy initiatives	
However, electrification alone cannot lead to achieving net zero goals	Demand	 Pool hydrogen demand of several end- users within the valley creating a bigger 	
 Hence, green hydrogen plays an essential role in the global effort to achieve net-zero emissions by 2050 	• Aggregation	significant market	
 Green hydrogen is the only long-term, scalable, and affordable option for decarbonisation in hard-to-abate industries like ammonia, petrochemicals, mobility, maritime, etc. 	€ Economies of Scale	Large scale hydrogen production and local supply chain development leads to cost competitiveness	
 Green hydrogen also complements other decarbonisation technologies like renewable energy, biofuels, or developments in energy efficiency. 	❹_ e Sharing of	Foster deeper coordination & collaboration among actors across value chain	
Hydrogen valleys provide an environment for demonstration projects to be carried out across the entire value chain, thus enabling a hydrogen ecosystem.	■ Oritical Infrastructure	segments, resulting in reduced transactio costs (H ₂ storage and transportation expenses)	
Pilot Hydrogen Ecosystem Projects	Socio- Economic	 Hydrogen Valleys attract investment, spur regional infrastructure development, boost the economy, foster technology innovation & skill development through pilot projects 	

Source: Hydrogen Council; Net Zero by 2050- IEA; MEC+ analysis

35

Global Momentum: Green Hydrogen gaining worldwide traction

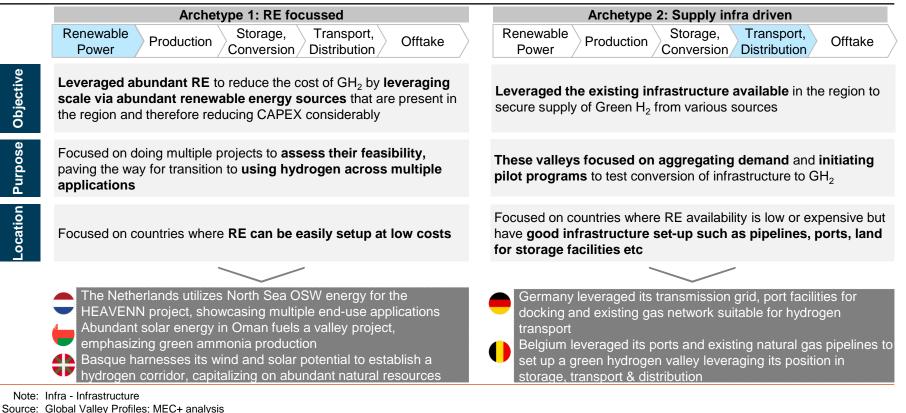
with nearly 41 countries actively working on a national hydrogen strategy

36 Note: NZE- Net zero emission; *For India the status of strategy has been updated for 2023 Source: <u>World Energy Council; MNRE; Global Hydrogen Review 2023, IEA;</u> MEC+ analysis

Globally 80+ valleys have been recognised

EU leading the concentration; however, majority of valleys are at early stage of development, highest at pre-FID stage

Geographic split of hydrogen valleys across regions 70% of the global valleys Number of vallevs Initial idea for establishing a GH₂ valley Concept developed 10.77% formulated, outlining the basic framework and objectives Assessment in progress to determine the Feasibility (study 67 15.38% practicality, viability, and potential success of D'S' implementing the GH₂ valley 12 Pre-Final Investment Decision stage where Pre-FID phase 46.15% detailed plans, costs, risks, and necessary Europe APAC. Middle Americas arrangements are prepared East, Africa Post -FID phase Execution of plans, securing financing, and 7.69% Total Investment: moving towards the implementation of the valley 11,06,940.3 INR Cr / Under construction Physical work and installations for the Electrolyser Capacity: 12.31% infrastructure of the GH₂ valley are in progress 40.34 GW **Dperational** GH₂ valley is functioning, producing, and EU Funding for Valley: 7.69% distributing hydrogen with planned systems 1,770 INR Cr and operations in place


7 Note: 1 EUR = INR 88.5 Source: <u>Mission Innovation Platform; European Commission</u>; MEC+ analysis

Global hydrogen valley landscape

Lessons – Archetype | Globally, distinct archetypes have emerged

each leverages its position in the hydrogen value chain to foster the development of a robust valley

Valley archetypes across hydrogen valleys

Lessons – Governance | Three models emerge across global valleys

each exhibiting a different degree of participation between the public and private sectors, shaping the structure of the valley

Governance models across hydrogen valleys

	High private participation	High govt participation	
	Model 1: Association model	Model 2: Project specific model	Model 3: Working group model
Govt. role	Government supports the association's valley development by offering incentives, policies	Government participates in overall strategy for green hydrogen and facilitates resource allocation, monitoring of project execution	Government dictates the vision, strategy, and key decisions for valley development, following a top-down approach
Private role	Association/consortium dictates valley vision and acts as main coordinator following a bottom-up approach proposing and governing projects	Private players execute projects identified by govt	Participate in government-established working groups and cross-functional teams across the hydrogen value chain to come up with rules, regulations, etc
	• • •		
Lessons learnt	In Germany, Netherlands, Basque, an association model prevails, bringing together a consortium of public, private, and knowledge-based bodies. This unified approach towards the common goal of the success of the valley facilitates easy access to funding, political backing and public acceptance	In Oman, a tailored auction system , spearheaded by the government for green hydrogen projects, outlines defined roles and responsibilities for the developer . This approach ensures efficient resource allocation, robust project development , and designated offtake mechanisms	Belgium's clear government-driven hydrogen strategy prompted the establishment of a dedicated program office overseeing specialized working groups. These groups, possess distinct roles and responsibilities spanning the hydrogen value chain, thus ensuring a resilient and structured framework

Lessons – Government support | Govts. have actively supported

supply-side incentives, demand aggregation as well as significant fund allocation for first-mile infra in the hydrogen valleys

Key enablers of a successful hydrogen valleys globally

Supply creation **Demand creation** Funding (need for both public and private funding) (providing incentives, subsidies, etc) (ensuring substantial offtake) Gasnetz Hamburg, wholly owned State owned company along with private company of the city of Hamburg is working . State owned company to offtake demand company to fund one third of the total on expanding the existing pipeline which for district heating purposes Germany investment amount will be suitable for hydrogen The Municipality of Groningen agreed to Govt allocated approximately INR 17 Cr Secured public and private funding. Public towards the development of the Delfzijl purchase, own, and operate hydrogen contribution comprised support from the Netherlands Chemical Park, aimed at fostering the powered garbage trucks and light duty region and the state. The valley suggests growth of a hydrogen hub simplification of regulations for funding vans ensuring offtake Boosted by local petrochemical demand Three electrolyser plants to be setup by and natural gas substitution. Expected Public private funding of ~INR 3796 Cr Basque Petronor, a privately held company mobility demand by Araba, Gipuzkoa, and received **Bizkaia Provincial Councils** Govt conducted auctions and awarded The developers signed an MoU with Yara Received loan from REC of approximately land and resources basis auction criteria for complete offtake of the green ammonia ~INR 4000 Cr Oman easing hydrogen supply produced Flemish govt invested in electrolyser for Demand offtake largely concentrated GH₂ production (INR 38 Cr) H₂ pipeline around ports in various use cases such as Significantly funded by the government Belgium (INR 2212 Cr) for transportation refinery, mobility, chemicals

Private/Priv-Govt.

Govt.

Global H₂ Landscape and Valley Focus

Kochi Hydrogen Valley - Summary

- Scenarios of Valley Development
- Base Case Scenario Deep Dive
- Governance Model
- Socioeconomic Impact

Kochi Hydrogen Valley - Design Choices Kochi Hydrogen Valley - Background Information Kochi Hydrogen Valley - Global Valley Profiles Appendix

Sectional Summary

Kochi Hydrogen Valley - Summary

Demand in the valley and scenarios for valley development	 Green Hydrogen demand is seen in 10-12 sectors of which all are present in Kerala. This brings the total potential of GH₂ to around 120 kTPA and an additional demand of 40-100 kTPA through exports Within this potential demand, more than 100 kTPA demand is concentrated within Kochi consisting of refineries, fertilizers, chemicals, transport hubs etc. For the Kochi Valley, India's best RE resources, centralised hydrogen production and refuelling infrastructure and green hydrogen/ammonia transportation through pipelines are envisioned with offtakers including BPCL, FACT, HOCL, KSRTC, KWML, KSINC and exports To realize this supply and demand, 2 scenarios exist: Base Case with a potential demand of 92 kTPA requiring 0.9 GW electrolyser and 4.8 GW RE by 2040 Aggressive Case with a potential demand of 195 kTPA requiring 2 GW electrolyser and 10.3 GW RE by 2040
Adoption of base case and phases of valley development	 The valley will adopt base case as this requires lesser changes in regulations, and more time for technology shift The adoption will be in three phases - Phase I - preparation phase, Phase II - pilot phase and Phase III - scale up phase and activities to be carried out across 5 sectors (Refineries, Fertilizers, Road Transport, Water Transport and Exports) and adoption in Chemicals Phase I to be focused on stakeholder engagement, developing workplans, conducting feasibility studies and mobilization of funds across the 5 sectors Phase II to be focused on the commissioning of the pilots based on results of the feasibility studies, testing the performance of pilots and the technology, understanding and addressing practical challenges and initiation of commercial scale adoption Phase III to be focused on the scale-up of adoption across the sectors, linkages between the sectors and synchronizing the operations of the valley

Sectional Summary

Kochi Hydrogen Valley - Summary

Governance model in the valley	 ANERT being the nodal agency for RE in Kerala is well-positioned to be the nodal agency for hydrogen valley ANERT will have defined roles in all 3 phases from stakeholder engagement to being the implementation agency for the valley ANERT to establish Kerala Hydrogen Council (department under ANERT) and Kerala Green Hydrogen Hub (subsidiary company) Kerala Hydrogen Council to have 4 functional departments and will be responsible for fund co-ordination, techno- commercial feasibilities, R&D, standards & certification and reporting Government funds for R&D, training and salaries to council employees to be disbursed through the council Kerala Green Hydrogen Hub to function as an asset holding company, holding the shared infrastructure investments and projects on its balance sheet All investments on shared infrastructure and purchase of assets to be made through the subsidiary
Investments in the valley and socio- economic impact	 This valley development will require significant CAPEX investments. Investments required in hydrogen production, infrastructure development for H₂, NH₃ and transmission grid totaling to INR 56 crore, INR 669 crore and INR 5130 crores in the three phases additionally Additionally, development of RE would require INR 903 crores in phase I and INR 836 crores in Phase II if Kerala RE is used and INR 10,948 crores for phase 3 additions The development of this valley will create significant socio-economic benefits by enabling 8 out of 17 SDGs with focus on jobs, carbon abatement and net value addition The valley would generate ~3,600 jobs with more than 80% during the construction phase (one-off jobs) The valley would abate nearly 0.49 million tons of CO₂e from Kerala emissions reducing the total emissions by ~2%

Global H₂ Landscape and Valley Focus

Kochi Hydrogen Valley - Summary

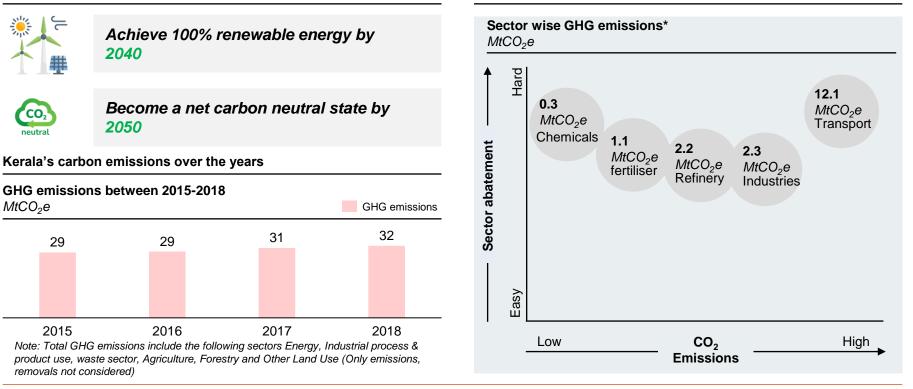
Scenarios of Valley Development

- Base Case Scenario Deep Dive
- Governance Model
- Socioeconomic Impact

Kochi Hydrogen Valley - Design Choices Kochi Hydrogen Valley - Background Information Kochi Hydrogen Valley - Global Valley Profiles Appendix

Various costs get added to LCOH

depending on the configurations and design choices throughout From the production to point of consumption

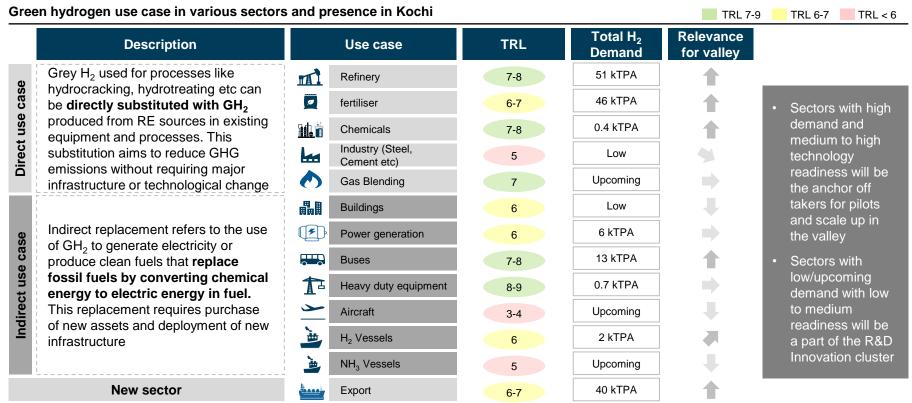

Production Compression and Purification Storage **Transportation** Offtake H₂ has several use cases H₂ can be stored in 3 forms H₂ transported in 4 ways Green H2 is compressed to Pipeline Suitable H₂ forms higher pressures depending RE used for production of H₂ & O₂ via electrolysis Salt Caverns Industry ® ⊈Ū⊐⊅ Solar power on the use case (G) (L Gaseous form (G) requirement. It can range in **Rock Caverns** between 30 bar to 300 bar depending on the use case Depleted gas fields Hydrogen trailer Mobilitv with higher pressure usually required for mobility sectors Pressurised Ŵ <u>H</u> (G)containers Power Liquid hydrogen Wind energy Liquid form (L) Ships generation Ammonia Further, Green H2 is also purified with ranges in (G)(L LOHCs Heavy duty between 99.9% to 99.999% equipment with higher purity levels Liquid H₂ trailer required in mobility and Solid form (S) fertiliser sectors Metal Hydrides <u>____</u> (L **Buildinas** Hydro power

Hydrogen value chain and the opportunities across each stage

>50% of Kerela's GHG emissions are from hard to abate sectors

Kerala has annual GHG emissions of 32 MtCO₂. Hence the state must consider Hydrogen as a part of its decarbonisation plan

Kerala's climate targets

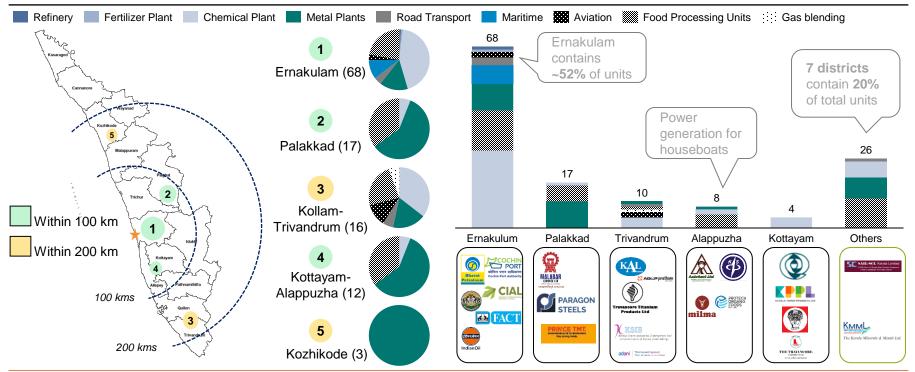


Sector wise carbon emissions vs Ease of abatement

46 Note: *Non-exhaustive list of sectors; Ammonia Production considered for fertilizers; Industries (others) and chemicals (others); CO2e – GWP-AR6 Source: <u>Trend analysis of GHG emissions in Kerala; GHG Platform</u>; <u>BPCL</u>; MEC+ analysis

Green Hydrogen demand in Kerala is driven by 6 sectors

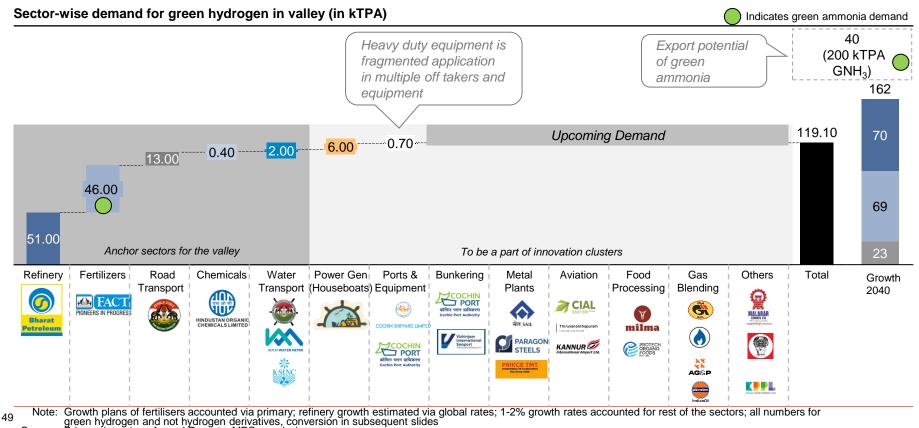
10-12 use cases for green hydrogen currently exist, all of which are present in Kerala, however, only 6 drive the potential demand


Note: Demand for power generation based on houseboats demand; Heavy duty equipment like cranes are being electrified in ports; Within chemicals demonstration projects are being conducted globally; For fertilizers demonstrations are being conducted at smaller scales Source: Oxford-DTU; ITIF-IEA; KTH; Green Hydrogen Industrial Cluster Guidelines; MEC+ analysis 47

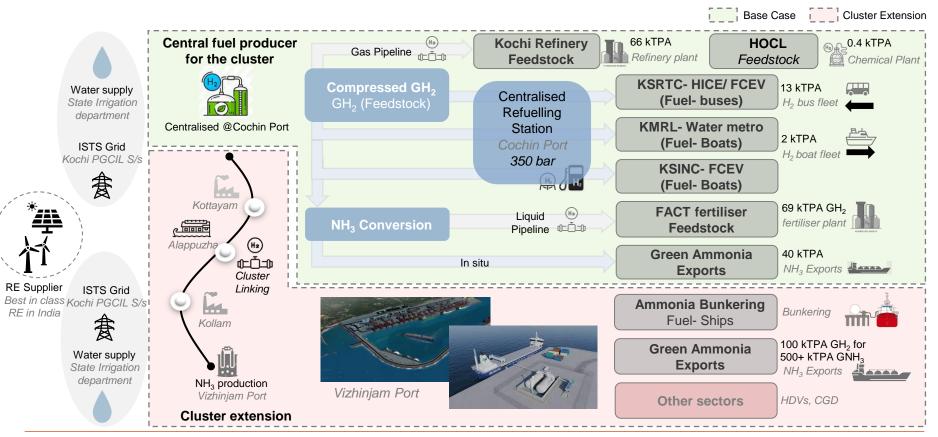
Ernakulam/Kochi is the biggest cluster

Of the 5 industrial clusters in the states where relevant end users can be seen

Demand clusters arising in Kerala and their concentrations


Number of units

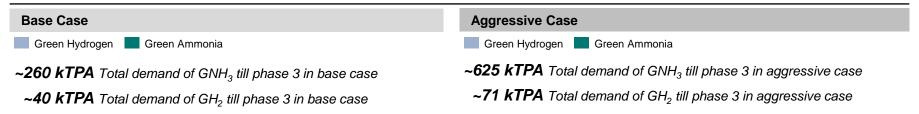
48 Note: Food processing and chemical units are smaller in size but higher in numbers Source: Company Websites; MEC+ analysis

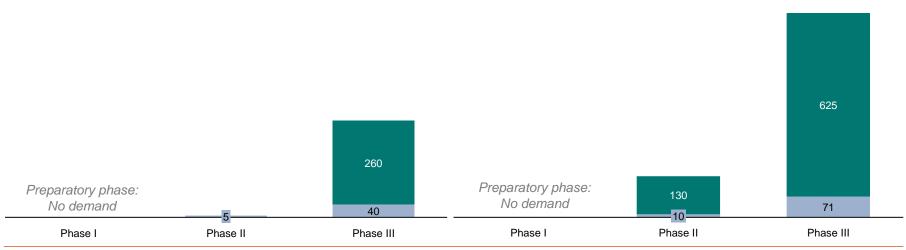

Overall, Kerala has an intrinsic GH₂ offtake potential of ~120 kTPA

which is expected to reach 162 kTPA by 2040; additionally, valley could require 40 kTPA GH₂ for green ammonia export facility

Source: Primary interview; Annual Reports; MEC+ analysis

KERALA GREEN HYDROGEN VALLEY- VISION 2040

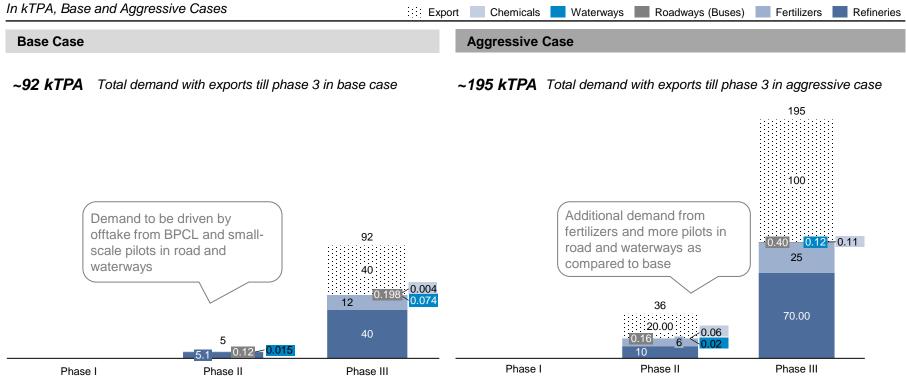



Kochi Green H₂ valley is based on the end-use of Green Ammonia

with demand of 40 kTPA $GH_2/260$ kTPA GNH_3 in base and 71 kTPA $GH_2/625$ kTPA GNH_3 in aggressive case 2040

PRODUCT MIX FOR THE VALLEY | Demand for green hydrogen and green ammonia in the valley

In kTPA, Base and Aggressive Cases



Source: Primary interviews; Annual reports; MEC+ analysis

...this translates to green hydrogen demand of 92 kTPA in base case

and 195 kTPA in aggressive case including exports

Sector-wise demand for green hydrogen valley

Source: Primary interviews; Annual reports; MEC+ analysis

Requiring to install 1 GW electrolyser in base case in 2040

and doubling to 2 GW electrolyser in aggressive case

Supply requirements for green hydrogen valley

Base and Aggressive Case cumulative numbers

	Base Case				Aggressive Case		
		Phase I	Phase II	Phase III	Phase I	Phase II	Phase III
Inputs	Renewable Energy	0.3 GW	0.5 GW	4.8 GW	0.3 GW	2.3 GW	10.3 GW
dul	Water		1.04 lakh KL	18.4 lakh KL		7.3 lakh KL	39.0 lakh KL
Hydrogen	Electrolyser		0.05 GW	0.9 GW		0.4 GW	2 GW
	Pipelines			14.1 km(NH ₃) 12.4 km (H ₂)		14.1 km(NH ₃) 12.4 km (H ₂)	14.1 km(NH ₃) 12.4 km (H ₂)
	Land Requirement		3.3 Acres	175.3 Acres		88.3 Acres	409.1 Acres
	Refuelling		400kg/day station	400kg/day x2 station		600kg/day station	1600kg/day station
ure	H ₂ Refuelling Storage (kg)		400	800		600	1600
Other Infrastructure	Conversion Infra (NH ₃)			296 kTPA NH ₃ Plant		148 kTPA NH ₃ Plant	706 kTPA NH ₃ Plant
	H ₂ Storage		16 tons	279 tons		110 tons	592 tons
Oth	Vessels		1 Vessel	3 Vessel		1 Vessel	3 Vessel
	Buses		9 Buses	15 Buses		12 Buses	30 Buses

Note: Water considered at 20 litres/kg H₂; Land req. for H₂ & NH₃ production, refuelling station, pipeline and H₂ buffer storage considered. Area for pipeline and storage on surface area and 10% buffer excludes land for substations (high level estimates); Vessel in Phase II (aggressive) to operate for more days in the year Source: (Vattiata, 2023); ISPT; Iberdrola; Research Articles; MEC+ analysis

Valley to adopt the base case

As multiple challenges exist to adopt aggressive case in lines of policy interventions and steep decline in economics

Selection of base case | Criteria

Regulations	Economic Case	Technology readiness	
 Adopting the aggressive case would need multiple regulatory interventions on: Plant level mandates on different sectors Specific incentives and support from government for offtake Standards and certifications to measure validity & safety of green hydrogen/derivatives Currently in India, direct mandates for offtake of GH₂/derivatives do not exist at plant level and there are limited set of standards and certifications, hence, the offtake is expected to be slow favouring the base case 	 Shift towards a new technology renders challenges in terms of high costs when compared to: Incumbent carbon intensive fuel Alternate mature low carbon intensive technologies Currently in India, small scale production of green hydrogen/derivatives is undertaken leading to comparatively higher costs which are expected to decline in future due to economies of scale and maturity in technology, hence, the initial offtake is expected to be slow favouring the base case	 Adopting the aggressive case would require high technology readiness via: Infrastructure development Process integration at small and large scale Currently in India, these provision do not exist at scale and hence slow-paced offtake will be expected favouring the base case 	The present scenario of regulatory, economic and technology landscape lowers the possibility of aggressive case leading to the selection of base case for the development of the green hydrogen roadmap

Global H₂ Landscape and Valley Focus

Kochi Hydrogen Valley - Summary

Scenarios of Valley Development

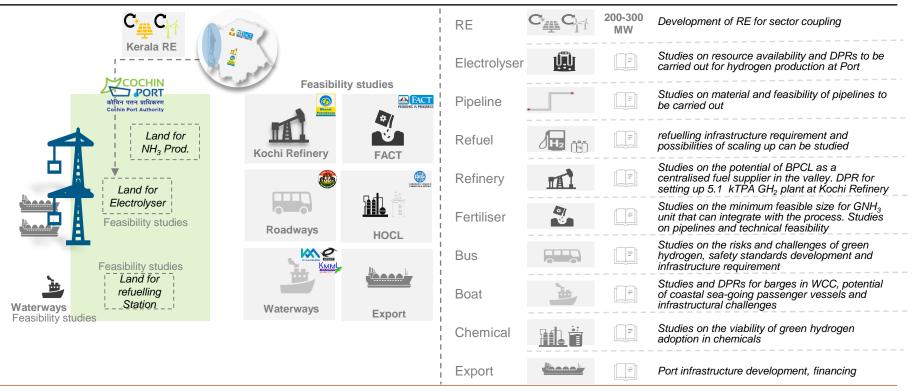
Base Case Scenario Deep Dive

- Governance Model
- Socioeconomic Impact

Kochi Hydrogen Valley - Design Choices Kochi Hydrogen Valley - Background Information Kochi Hydrogen Valley - Global Valley Profiles Appendix

A phased approach is suggested for valley development

in base case, wherein initial phases are focussed on preparatory activities, phase II on pilots and phase III on scale-up

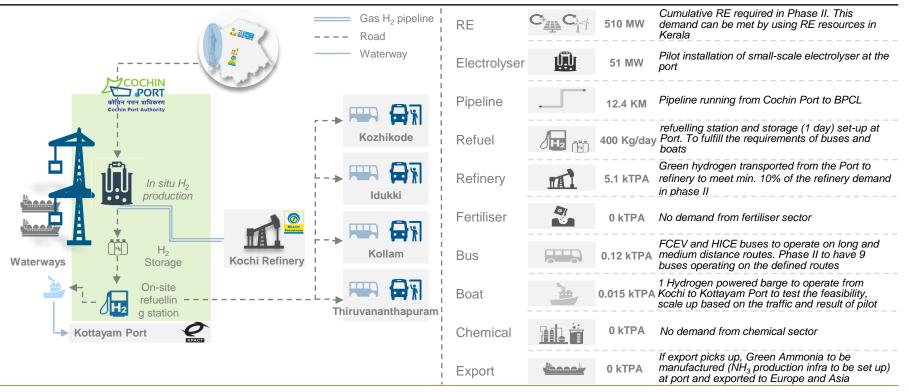

		20	30-2040
	2024-25	2026-2030	ase 3 Hub phase
		Phase 2 Pilots phase	
Policy design & stakeholder engagement	 Alignment of KL GH₂ policy to national policy policies in refinery, fertilizers sectors Capacity building & stakeholder engagement Creating standard & certification for H₂ prod transport, storage & refuelling infra; in line w international standards International cooperation for joint learning or 	program uction, ith	
Supply side & infrastructure	 Creating policy environment for supporting supply-side infrastructure (10-year period) including single window permitting and open access charges waiver ANERT is the nodal agency for sector coupling via RE; creating shared HV Transformer, for ISTS import 	 Expansion of role of ANERT to create hydrogen parks and all associated shared infrastructure for H₂ delivery Individual and smaller electrolyser as per pil demand 1 centralised refuelling station in port 	- Central production units at Port for economies of scale ot - Expansion of hub to Vizhinjam (Thiruvananthapuram)
Demand Side & investments	 Sector by Sector techno-commercial feasibility evaluations and funded innovation projects (e.g. CSL for innovation in vessel conversion) Sector coupling for demand aggregation Provision of 200 – 300 MW RE and development of transmission infrastructure 	 10% green hydrogen consumption obligation on refineries Initiation of pilots – 9 buses to test both HIC and FCEV technologies, 1 barge on the Koch to Kottayam route Renewable energy and associated infrastructure 	refineries and fertiliser -10% to

Phase I is the preparation phase for the valley

wherein sector-wise feasibilities are analysed, policies and standards are aligned, and offtake sectors are coupled through RE-RTC supply

Kochi Green Hydrogen Valley | Phase I

Visualisation

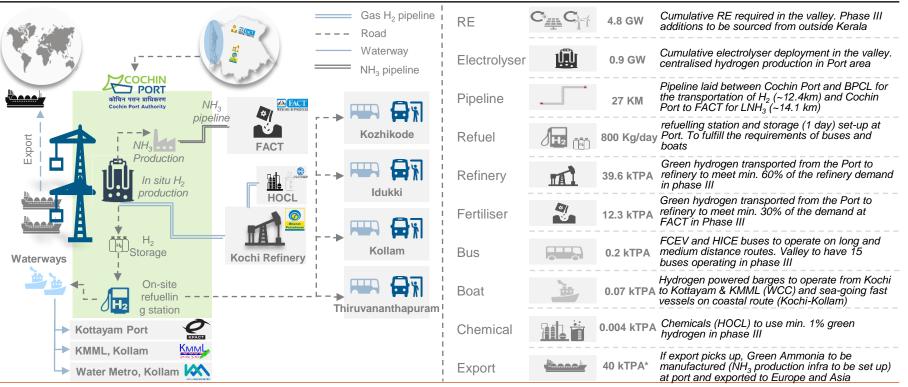

Source: MEC+ analysis

Phase II is the pilot phase for the valley

where common infra built for RE-RTC is extended for GH₂ pilot projects and demonstrations are taken up for 3 use-cases- transport in road & water, refinery

Kochi Green Hydrogen Valley | Phase II

Visualisation

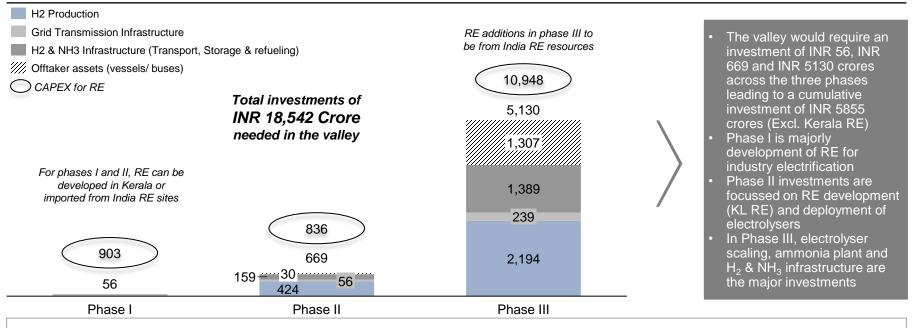


Phase III is the scale-up for the valley

with centralised electrolyser at port trunk infra coupling multiple end use sectors including refinery, fertiliser, road & water transport and chemicals

Kochi Green Hydrogen Valley | Phase III

Visualisation

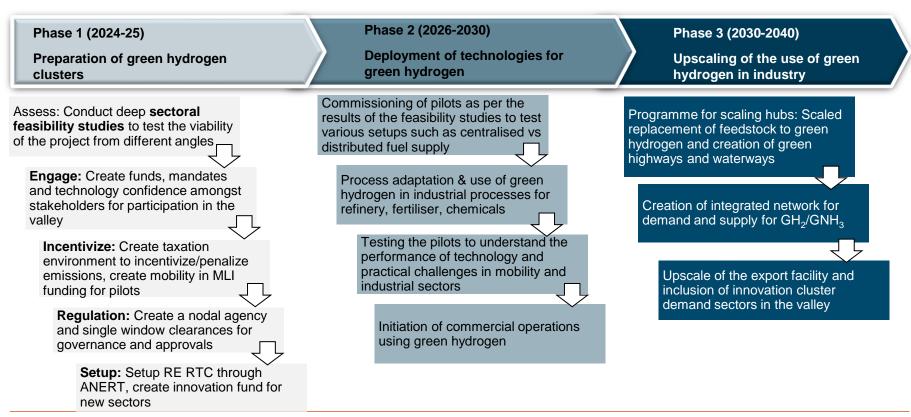

59 Note: *Green Hydrogen Requirement for Ammonia production; LNH₃: Liquid Ammonia Source: MEC+ analysis

Development of valley will require significant CAPEX investment

669 Crores for pilots and additionally 5130 Crore in scale-up phase, excluding investments in RE

Capital Investment additions required by phases

In INR Crores



RE includes cost of setting up Renewable Energy Plant | H₂ production includes cost of setting up electrolyser for hydrogen production | Transmission infrastructure includes the cost of substations and land required for substations | H₂ & NH₃ Infrastructure includes H₂ refuelling and storage, H₂ pipeline, H₂ buffer storage, NH₃ pipeline and NH₃ storage and land costs for H2, NH₃, H₂ storage, H2 pipeline and NH₃ pipeline | Offtake includes CAPEX for buses, boats and ammonia production facility (Haber Bosch and Nitrogen-ASU)

60 Note: Cost of RE in phase 2 is less than phase 1 due to decrease in RE CAPEX and minimal increase in RE volume Source: Primary Interviews; Research Articles; MEC+ analysis

The 3 phases have different agendas

Phase 1 is based on conducting feasibility assessments, engagements; phase II for initiating pilots and Phase III for scaling up the valley with development of trunk infrastructure

Refinery sector – Phase I: 4 Feasibility Studies are Suggested

to assess various configuration of in-situ vs. offsite electrolyser, phase II has a pilot adoption, phase III envisions BPCL as the key off taker and participant in valley in 2040

Phase 1: Preparatory phase	Phase 2: Pilot Phase	Phase 3: Valley Phase
 Assess (DPR/ feasibility): Conduct feasibility of developing BPCL as GH₂ fuel supplier for the valley, supplying to FACT, refuelling hub. Check technical limitation, infra and financial limitations Create DPR for 5.1 kTPA and assess risk of stranded assets and cost impact Feasibility of BPCL- Port pipeline for hydrogen transport Infrastructure requirement for BPCL/ FACT/ export potential hub at Kochi with pipeline & storage Engage: BPCL for centralised fuel supply set up Central govt. for refinery level mandates and funds Multilateral and trade bodies for funds NGOs Incentivize/ Penalties Considerations on introduction of carbon pricing to be promoted Introduction of emission standards Financial mobilization for pilot funding with MLIs, global valleys Regulation Designate ANERT as nodal agency Develop permitting process clarity and single-window clearance with ANERT Draft safety & standards Draft certification process for GH₂ verification Verification/ certification process of GH₂ 	 Pilots: Set-up 5.1 kTPA green hydrogen pilot in Kochi refinery for testing infrastructure requirements Pilot objectives: In pilot, verify DPR assumptions on: Energy & water requirements Technology & process responsiveness Infrastructure requirement Costs- CAPEX, OPEX, DEVEX & Cost development trajectories Power production profile actual vs. expectation Need for buffer storage Manpower requirement & agencies involved Finalize ability to make BPCL as central production unit for valley Organisation requirement for co-ordination with ANERT Technical team to be set-up Set-up PMU for pilot monitoring & evaluation 	 Possible development directions: Scale for 50-100% feedstock change-over Creating integrated network for supply for GH₂ in the valley through BPCL Vision: Two pathways for BPCL to develop fully for self-supply ramp-up or to further scale-up and develop as the central fuel supplier for the multiple use-cases in the valley BPCL might consider being part of the JV that might come up in the valley

62 Note: DPR: Detailed Project Report; CAPEX: Capital Expenditure; OPEX: Operational Expenditure; DEVEX: Development Expenditure; PMU: Project Management Unit Source: MEC+ analysis

Fertiliser sector – Phase I: Integration Studies are required

to understand the technicalities of the process, however, there is no pilot in phase II with direct adoption in scale-up phase, given the dynamics of minimum viable GNH₃ plant

Phase 1: Preparatory phase	Phase 2: Pilot Phase	Phase 3: Valley Phase
 Assess (DPR/ feasibility): Conduct feasibility study for minimum feasible size of GNH₃ unit that can integrate with the process Assessment of impact of green hydrogen substitution of natural gas import on energy efficiency targets Assess of feasibility to link FACT via H₂ pipeline Impact assessment for economics, technology, CAPEX and social benefits Engage: FACT for centralised NH₃ supply set up Central govt. for mandates (NPK) and funds, inclusion of GH₂ in the PAT scheme Multilateral and trade bodies for funds EXIM companies NGOs Incentivize/ Penalties Considerations on carbon pricing Introduction of emission standards Financial mobilization for pilot funding with MLIs Regulation Designate ANERT as nodal agency Develop permitting process clarity and single-window clearance with ANERT Draft safety & standards Draft certification process for GNH₃ verification Setup Infrastructure for RE-RTC through ANERT for FACT green power supply (20 MW) 	No pilot for fertiliser sector, in base case with green ammonia export opening in phase III and catering to fertiliser sector. If mandates are to be enacted in aggressive case, FACT may pilot small scale GNH ₃ plant, based on feasibility study results. To test: • Energy & water requirements • Technology & process responsiveness • Infrastructure requirement impact on life of equipment • Costs- CAPEX, OPEX, DEVEX & Cost development trajectories • HSE requirements and incidents (leakages, waste handling etc.) • Power production profile actual vs. expectation • Transport of ammonia using barges • Need for buffer storage • Manpower requirement, need for re-skilling & training • Permitting requirement & agencies involved	 Possible development directions: Scale for 18-36% feedstock change-over Explore network to upscale production (other fertiliser units) Explore export for green ammonia Explore green ammonia bunkering at Kochi/ Vizhinjam Vision: FACT is an anchor consumer sourcing H₂ fuel at competitive rates by providing scale to the plant being set-up in Kochi and participate in new JV that might come-up

Road Transport – Phase I: 4 Feasibility Studies are Suggested

along with development of safety standards for passenger transport use case; 9 buses to run pilots

Phase 1: Preparatory phase	Phase 2: Pilot Phase	Phase 3: Valley Phase
 Assess (DPR/ feasibility): Risk and safety considerations in buses, disaster management principles and skill building Technical and commercial feasibility of complete electrification of KSRTC fleet challenges & infra requirement RE-RTC required for electrification Infra requirement for scaling H₂ supply from central node to decentral H₂ supply Standards for buses and refuelling infra Engage: KSRTC- build confidence with commitment for CAPEX for pilots & securing funds Cochin Port for refuelling infra State government for creating time-bound decarbonisation targets & mandate for road sector Multilateral and trade bodies for funds Manufacturers of HICE, FCEV, refuelling infra NGOs Introduction of emission standards Financial mobilization for pilot funding with MLIs Regulation Designate ANERT as nodal agency Draft safety & standards Setup RE-RTC through ANERT for EV chargers Innovation Fund: Assess proposals for award of fund for demonstrations in innovative use case* 	 Pilots: Setup 9 buses with mix of HICE & FCEV technology Build centralised refuelling infra at port/ KMRL high court station Test 1 decentralised refuelling station with transport infra Pilot objectives: In pilot, verify DPR assumptions on: Unit economics of HICE vs. FCEV Ranges in single fuelling CAPEX and OPEX considerations Need for manpower & skill building cost of maintaining three technologies in the valley (EV, HICE, FCEV) Environmental impact of CO2 abatement as well as SOX/NOX comparison in HICE HSE requirement for HICE; fuel handling; disaster management Pathways to build decentral refuelling infra and optimization of size, also storage vs. exchange of cylinders Organisation requirement: Set-up department for co-ordination with ANERT Training & skilling- operators and maintenance workforce Set-up PMU for pilot monitoring & evaluation 	 Possible development directions: Scale for 15-30 buses running long-routes Develop optimal set-up for refuelling strategy and set-up Vision: Achieve green coastal and road highway by 2040 through mix of EV on short-routes, HICE on medium routes and FCEV on longest routes Develop infra in Kochi-Trivandrum hub and along the route

64 Note: * Innovative use case for the valley such as HICE retrofits in existing assets, FCEV bus/ component manufacturing, new tech in H₂ mobility Source: MEC+ analysis

Waterways – Phase I: Infrastructure Requirement Studies

to understand challenges; followed by pilots in phase II and scale up based on the success of pilots in phase III

Phase 1: Preparatory phase	Phase 2: Pilot Phase	Phase 3: Valley Phase
 Assess (DPR/ feasibility): DPR for 1 boat (cargo) using bus refuelling infrastructure Comparison of Kochi to Kollam vs. Kochi to Kottayam route) Build 2nd DPR with Water metro for 1 fast ferry (seagoing) from Kochi to Kollam Assess potential of coastal shipping in Kerala (passenger vs. cargo) and readiness status Assess RE RTC requirements of EV ferries Socio-economic impacts of transport through water-ways, impact on fishing communities Engage: Possible Operators: Kochi Water Metro, KSINC and users KMML, Kottayam port & Kochi Port KMB & State Government for vision and target of coastal shipping Multilateral funding; central govt for designated FCEV pilots NGOs (especially coastal community linked) Cochin Shipyard & KPIT for vessels Lower taxation in waterways for initial phase Financial mobilization for supporting pilot Regulation Designate ANERT as nodal agency Draft safety & standards Target for switch of traffic from road to water ways; State owned enterprise to have target for %age cargo through waterway 	 Pilots: Run 1 cargo barge as per feasibility report with KSINC/ KMML or Kottayam port or run 1 fast passenger ferry to Kollam with water metro Test run in coastal canal for operational challenges Use bus refuelling station in Cochin port Pilot objectives: In pilot, verify DPR assumptions on: Unit economics of FCEV Design considerations Finalize optimum routes Organisation requirement: Set-up department for co-ordination with ANERT Set-up PMU for pilot monitoring & evaluation 	 Possible development directions: Scale in line with coastal shipping vision of the government Extend from Kollam to Trivandrum covering Kochi to Trivandrum route (200 kms) Scale refuelling station at port to meet requirement Develop second refuelling in Trivandrum (Vizhinjam) Vision: Run Coastal route and national waterway (WCC) with FCEV Develop refuelling integrated infra within Kochi/Trivandrum route

Note: WCC: West Coast Canal; RE-RTC for water metro & feeder bus fleet; Build 1 FCEV barge & 1 FCEV fast ferry with cochin shipyard & KPIT Innovation fund; Assess proposal projects innovative use-case & demonstrations, including houseboat retrofit, mfg. of vessels, tech innovation in H₂ mobility; award fund through bid Source: MEC+ analysis

65

Green NH₃ Export

Phase I & II to focus on infrastructure, standards and asset development leading to exports in phase III

Phase 1: Preparatory phase	Phase 2: Pilot Phase	Phase 3: Valley Phase
 Assess (DPR/ feasibility): Infra requirement for setting up port infrastructure at the port of Kochi and Vizhinjam Ability to supply Green H₂ from grid connection and the infra for electrical assessment, Identify land that can be given near S/s & competing use Engage: Department fundings available for port infrastructure development Funding available for augmenting the electricity infrastructure and create a separate GH₂ corridor around port of Kochi and Vizhinjam NGO and local port communities on the space requirements and HSE, ESG requirements Incentivize/ Penalties Specify the waivers on land, water, electricity Specify the extent of banking and the amount by providing clarity on the financial outlay for providing banking & no. of years Regulation Designate ANERT as nodal agency Develop permitting process clarity and single-window clearance with ANERT Draft safety & standards Draft certification process for green NH₃ Draft plan to monitor the implementation of the project when the project incentives scale down 	 Infrastructure Storage Infrastructure Port Infrastructure Trunk Infrastructure Assess Identify extent of ROW to port and the upgrade needed Assess incentives Assess the export proposals received by the Kerala Government 	Possible development directions: • Create a central hub for export and supply Vision: • Vizhinjam and Kochi port become major fuel supplier on the south west coast of India

66 Note: We have not deep dived in phase development of chemicals sector given it is a very fringe sector Source: MEC+ analysis

Global H₂ Landscape and Valley Focus

Kochi Hydrogen Valley - Summary

- Scenarios of Valley Development
- Base Case Scenario Deep Dive

Governance Model

Socioeconomic Impact

Kochi Hydrogen Valley - Design Choices Kochi Hydrogen Valley - Background Information Kochi Hydrogen Valley - Global Valley Profiles Appendix

Nodal agency is required – ANERT most suitable

To perform preparatory activities in phase I, support pilot infra in phase II and as implementing agency in phase III | ANERT most suitable to play the roles

Nodal Agency

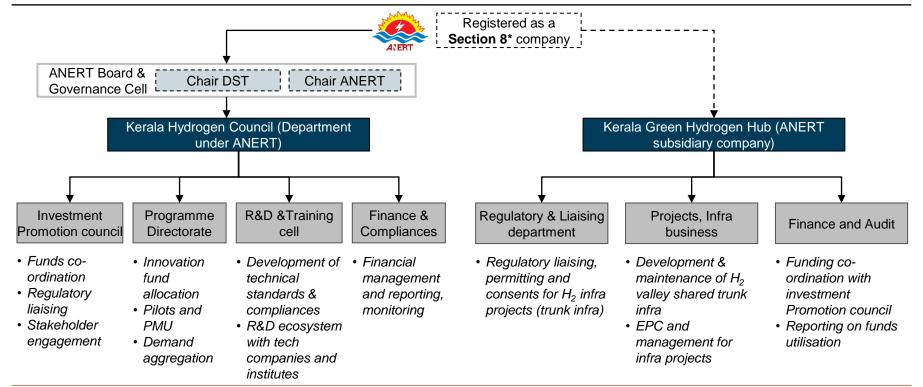
 The valley requires a nodal agency to be able to co-ordinate the activities across sectors and across the value-chain needed to develop a successful hydrogen valley

- State nodal agencies have a role of ensuring implementation of central and state programmes related to clean energy, hence ANERT is well-positioned to take on the role for green hydrogen valley activities
- The Department of Science and Technology has designated RE nodal agencies as the nodal agency for Hydrogen Valley Innovation Clusters, hence ANERT's role will align with the objective

Phase I | Feasibility assessments, stakeholder engagement, and sector coupling through RE SECI | Subsidiary to BOO trunk infra

Phase III | Implementing

Kerala State, parallel to

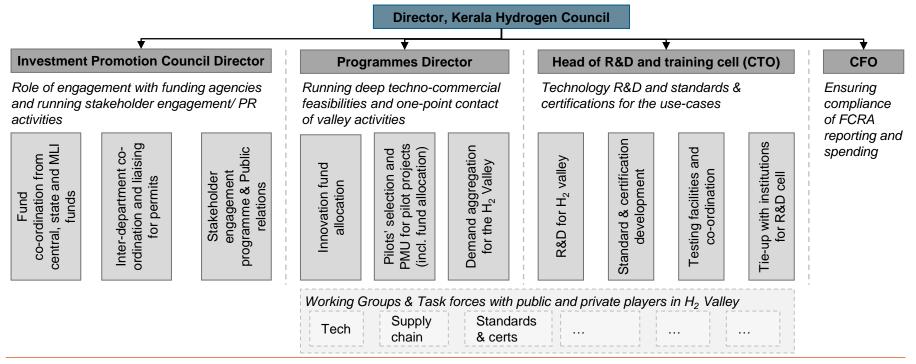

agency for GH₂ on behalf of

68 Note: PMU- Project Management Unit; trunk Infrastructure related to common infra such as pipeline, grid, refuelling etc. Source: Interviews with ANERT; MEC+ analysis

ANERT to Register as Section 8 & Establish Hydrogen Department

separately asset hold-co to be created as an ANERT subsidiary company for shared infra creation

Suggested organisation structure and governance model



69 Note: *ANERT to be registered as Section 8 company- non-profit; trust deed needed with one of the stated objectives linked to dev. of hydrogen economy in Kerala Source: Interviews with ANERT; Transmission companies in India – organisation structure; MEC+ analysis

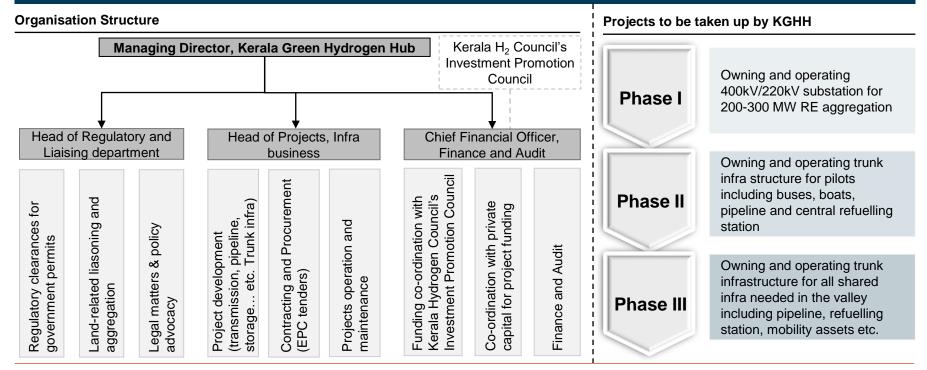
Kerala Hydrogen Council to be structured in 4 functions;

investment promotion council, programmes directorate, R&D and training cell, and compliances department

The Kerala Hydrogen Council will be responsible for achievement of Kerala Hydrogen-related objectives, fund co-ordination, demand aggregation, supporting R&D and training programs as well as reporting and monitoring

Source: Primary discussions; MEC+ analysis

Kerala Hydrogen Council to play a pivotal role across phases

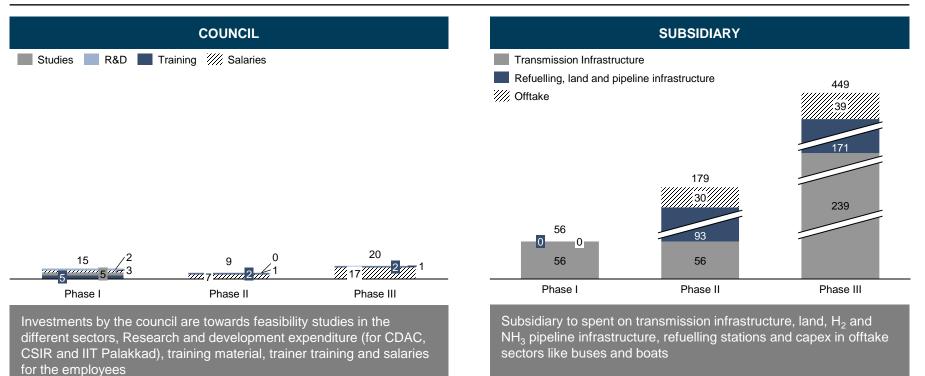

moving from role of fund aggregation and valley activities co-ordination body in phase I to Kerala's coordination authority for GH₂ projects in phase III

Department	Phase I Preparation Phase	Phase II Pilot Phase 2026-2030	Phase III Valley Phase 2030+	
Investment Promotion Council	 Aggregation of funds from various sources including central & state govt., trade bodies, multi-lateral institutes for funding valley activities Co-ordinating stakeholder engagement activities 	 Continuing fund aggregation and stakeholder engagement additionally acting as one-stop shop for all regulatory liaising requirements on pilots as well as shared infrastructure in the valley through inter- department footwork 	 Transition into the implementation agency (SECI) for Green hydrogen projects in Kerala State, including role of: Fund co-ordination 	
Programme Directorate	 Running the innovation fund for award of funds to low maturity tech demonstrations Selection and award of feasibility studies required for preparation of valley, one-point contact for knowledge partners 	 Selection of pilots in line with valley roadmap and objectives Project monitoring Unit (PMU) set-up to monitor progress of pilots, address challenges and collate results co- ordination with relevant pilot outside Kerala 	 Demand aggregation Auctions for project selection towards aggregated demand Project monitoring and resolution of challenges 	
R&D and technology cell	research and innovation, knowledge mar	d international labs/ institutions related to nagement and new technology development n GH ₂ valleys in Germany & EU countries	 Evolution of standards & certifications in line with technology trends Equipment testing facilities for ensuring safety and compliance in the valley 	
Compliances				

KGHH to develop as a subsidiary company

with core function of developing trunk infrastructure projects to create shared assets for the valley

The Kerala Green Hydrogen Hub (KGHH) will be a subsidiary company of ANERT functioning as an asset hold-co, holding all shared infrastructure CAPEX and projects on its balance sheet. The subsidiary to function as a large infrastructure development company


72

Investments in the valley are carried out by Council and Subsidiary

Council allocates funds for feasibility studies, R&D, training and manpower; Subsidiary allocates funds for infrastructure and offtake

Bifurcation of Government Spending

In INR Crore

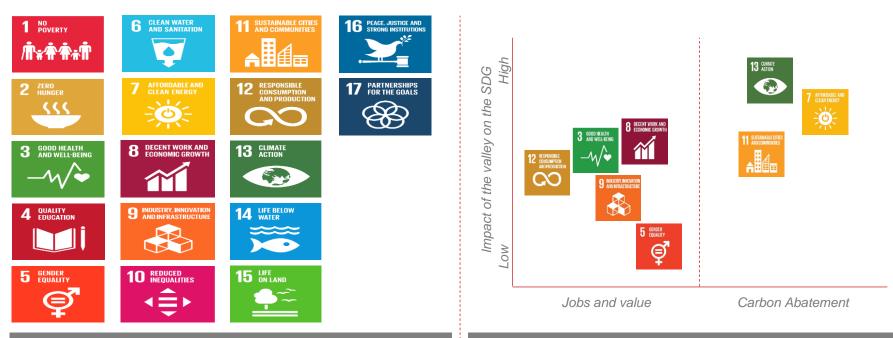
73 Note: Spent on R&D to include allocations to Cochin Shipyard; Salaries considered for 6,8 and 10 employees Source: Govt. of Kerala; MEC+ analysis Global H₂ Landscape and Valley Focus

Kochi Hydrogen Valley - Summary

- Scenarios of Valley Development
- Base Case Scenario Deep Dive
- Governance Model

Socioeconomic Impact

Kochi Hydrogen Valley - Design Choices


Kochi Hydrogen Valley - Background Information

Kochi Hydrogen Valley - Global Valley Profiles

Appendix

Sustainable Development Goals

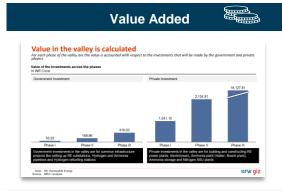
Valley to impact 8 SDGs enabling socioeconomic development through employment, value addition and CO₂ abatement

- Sustainable Development Goals were adopted in 2015 as a universal call to action to end poverty, protect the planet and ensure by 2030 that all people enjoy peace and prosperity
- The valley to impact 8 out of the 17 sustainable development goals

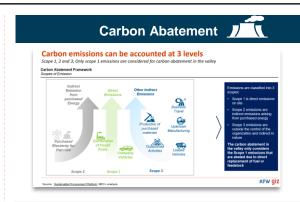
75 Note: Image credit: Azote Images for Stockholm Resilience Centre; UNDP Source: <u>UN SDG; UNDP;</u> MEC+ analysis

The valley with the use of green hydrogen will lead to positive climate action, development of clean energy, sustainable mobility options, opportunities for jobs, economic growth and development of infrastructure in the region

Socioeconomic Impact of the Kochi Green Hydrogen Valley


could be seen through 3 indicators; employment generation, value added to economy and carbon abatement

Parameters to assess the socioeconomic impact of the green hydrogen valley


Employment Generation

ochi Green Hydrogen Va Iase I, II and III	Iley Opportunities to create jobs and		& value creation No New Jobs & value creat
	Phase I	Phase II	Phase III
Sectoral deep dives & Governance	Technical and feasibility studies, governance structure and engagement		
Manufacturing		Manufacturing of green hydrogen vessels	Manufacturing of green hydrogen vessels
Engineering and Construction	Development of RE plants (in case RE resources in Kerala is used)	Construction of hyshogen plant, pipelines, storage and refuelling stations	Scale-up of H ₂ plant, refuelling station, construction of NH ₃ facility and pipelines
Operations & Maintenance	O&M of RE plant	O&M of RE plant, electrolyser, storage & refuelting, pipelines, buses and vessels	Scale up of phase 2 along with O&M of NH ₂ facility and pipelines

- The employment generation of Kochi Valley is assessed based on the job creation potential of different value chain activities of green hydrogen and their different lifecycle stages
- The valley would generate ~3600 jobs cumulatively with more than 80% of the jobs being generated during the construction phase

- The value in the Kochi Valley is assessed based on the total investments that would be done by both the Government and Private players over the different phases of the valley
- The valley would have a net present value of 20832 INR Crore in the across the different phases of the valley

- The carbon abatement potential of the Kochi Valley is measured based on the potential demand of green hydrogen in different sectors and the amount of CO₂ emissions it can prevent
- The Kochi Valley has the potential to abate up to 0.49 MtCO₂e by 2040, this can bring down the total emissions by 2% from 2018 levels

Jobs and value additions are assessed

From RE production to offtake of green hydrogen at different lifecycle stages

Framework | Assessment of Jobs and value addition in the green hydrogen value chain

Value chain and lifecycle stages

					Value-chain of the	e proposed hydroge	n valley
			Renewable Energy	Hydrogen Production	Transportation & Storage	Refuelling Stations	Sectoral Offtake of green hydrogen
nts	Sectoral deep-	Technology experts,	Feasibility studies	s, technical studies, saf	ety and standards, projec awareness	t financing, DPRs for	pilots, stakeholder
npone	dives & Governance	Consultants, policy experts,		Governance Structur	e, selection of committee	e, engagement plans	
ain cor		finance, engineers Engineers, site managers,	Substations Manufacturing	Electrolyser Manufacturing	Pipeline Manufacturing & Installation	Compression systems & Storage	H ₂ Vessel Manufacturing
lue ch	Engineering Manufacturing	logistics, plant managers	RE Equipment Manufacturing	H ₂ Production Plant Installation	Pressurized Storage Tanks		Conversion to Ammonia
rent v	Construction	workers, contract labourers	RE Transmission infra development				H ₂ Bus Deployment
ffer			Installation/De				
of Di		Facility managers, equipment	Operations and Mair		(Solar Panels, Wind Tur Iling stations etc)	bines, Electrolysers,	Buses and Vessels O&M
Lifecycle	Operations & Maintenance	operators, bus and vessel operators, Administrative and management staff					O&M for conversion facility (NH ₃)

The valley has the potential to generate jobs and value

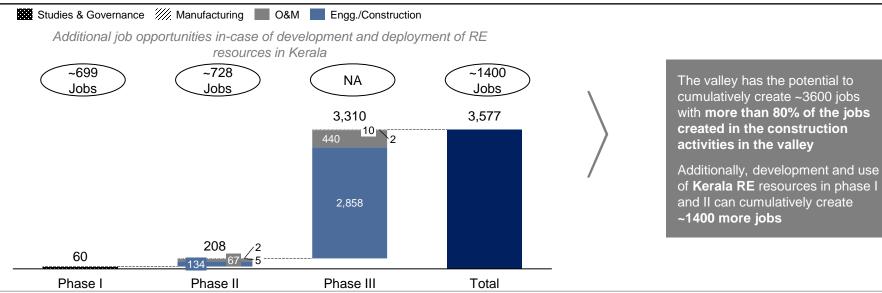
across different segments of the value chain activating in different phases

Kochi Green Hydrogen Valley | Opportunities to create jobs and value

Phase I, II and III

New Jobs & value creation No New Jobs & value creation

· · · · · · · · · · · · · · · · · · ·			
	Phase I	Phase II	Phase III
1 Sectoral deep dives & Governance	Technical and feasibility studies, governance structure and engagement		
2) Manufacturing		Manufacturing of green hydrogen vessels	Manufacturing of green hydrogen vessels
3 Engineering and Construction	Development of RE plants (in case RE resources in Kerala is used)	Construction of hydrogen plant, pipelines, storage and refuelling stations	Scale-up of H_2 plant, refuelling station, construction of NH_3 facility and pipelines
4 Operations & Maintenance	O&M of RE plant	O&M of RE plant, electrolyser, storage & refuelling, pipelines, buses and vessels	Scale up of phase 2 along with O&M of NH ₃ facility and pipelines


78 Note: Within sectoral deep-dives and Governance additional jobs created in phases II and III are minimal hence not considered Source: MEC+ analysis

The valley has the potential to create ~3600 jobs in total

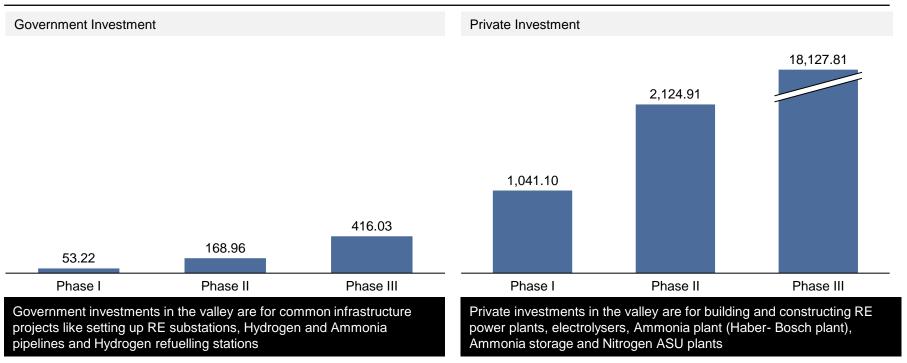
with majority of the jobs created in the construction phase

Kochi Green Hydrogen Valley | Jobs Created (cumulative)

Jobs by Activity

Notes and Assumptions: Jobs refer to number of people required for a specified time-period and not total job years/FTEs. Time periods can vary for construction jobs between 6 months to 2 years (2 years for electrolyser plant installation, 1.5 years for ammonia plant, 1 year for storage and vessel manufacturing, 6 months for refuelling stations) | Feasibility studies to span between 3 to 6 month | All O&M activities considered across the lifetime of the asset | RE evacuation infrastructure (site level) considered as included in RE plant construction jobs and other STU/CTU level infrastructure considered to be built as per existing plans and not considered as a part of the new jobs | Additional jobs arising from RE development in Kerala considers only solar and wind installations (hydro and pumped hydro not considered in this analysis but can be studied further) | Studies and governance to include 6-10 persons for governance and ~18 studies to be conducted across sectors

79 Note: RE: Renewable Energy

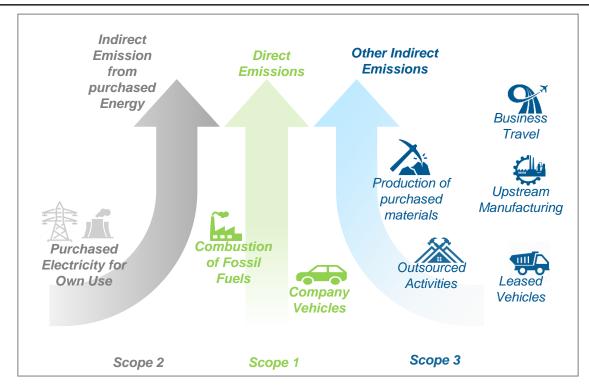

Source: Primary Interviews; Rhodium; HPCL; Research Articles; MEC+ analysis

Value in the valley is calculated

For each phase of the valley are the value is accounted with respect to the investments that will be made by the government and private players

Value of the Investments across the phases

In INR Crore



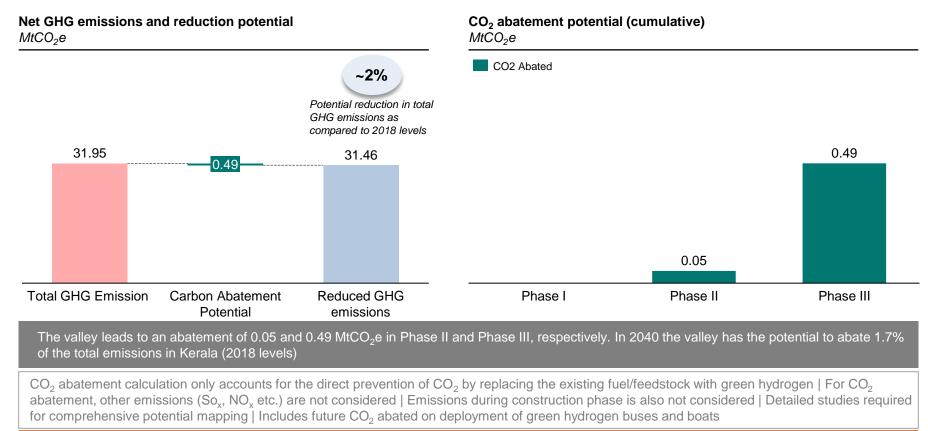
Carbon emissions can be accounted at 3 levels

Scope 1, 2 and 3; Only scope 1 emissions are considered for carbon abatement in the valley

Carbon Abatement Framework

Scopes of Emission

Emissions are classified into 3 scopes:


- Scope 1 is direct emissions
 on site
- Scope 2 emissions are indirect emissions arising from purchased energy
- Scope 3 emissions are outside the control of the organization and indirect in nature

The carbon abatement in the valley only considers the Scope 1 emissions that are abated due to direct replacement of fuel or feedstock

Source: Sustainable Procurement Platform; MEC+ analysis

The valley abates nearly 0.49 MtCO₂e from the KL emissions

reducing the total emissions by ~2% and progressing to net zero goals in 2050

Note: Comparisons based on 2018 GHG emission levels; MtCO2e: Million tons CO₂ Equivalent; GHG: Greenhouse Gases Source: <u>GHG Platform</u>; MEC+ analysis

Global H₂ Landscape and Valley Focus

Kochi Hydrogen Valley - Summary

Kochi Hydrogen Valley - Design Choices

- Anchor Sector Selection
- Supply Side Configuration Selection

Kochi Hydrogen Valley - Background Information Kochi Hydrogen Valley - Global Valley Profiles Appendix

Sectional Summary

Kochi Hydrogen Valley – Design Choices

Sectional Summary

Kochi Hydrogen Valley – Design Choices

Supply side configuration	 The valley could be built in two configurations based on the electrolyser location and the inclusion of exports Configuration 1 is export oriented with a centralised electrolyser at Cochin Port and pipelines set-up between the port and BPCL, FACT. NH₃ conversion facility also to be set up at Port for exports Configuration 2 is domestic demand oriented with the electrolyser set up at BPCL and pipelines to FACT and trailer transport of hydrogen to port for refuelling Configuration 1 is selected as it offers a lower landed cost across most sectors if the trunk infrastructure is supported by the government Price premiums exist across all sectors, needing a total viability gap funding between INR 1,055 and INR 2,908 crores cumulatively in phase 2 and 3 RE, electrolyser and storage costs are the biggest contributors in the investment costs and government support in these areas can reduce the burden on offtakers
Factors impacting the landed cost of green hydrogen in the valley	 The landed cost is sensitive to 3 major factors; RE plant location, banking provisions and utilisation of refuelling infrastructure The production cost can increase by ~46% in phase III if Kerala RE is used in place of India RE Availability of unrestricted banking (4000+ hours) can lower production costs by ~34% in Phase III, however, this would add stress to KSEB hence capping of banking at 1000 annual hours is suggested refuelling utilisation is sized to 100% utilisation as a lower utilisation rate (40%) can have costs higher by 140%

Source: MEC+ analysis

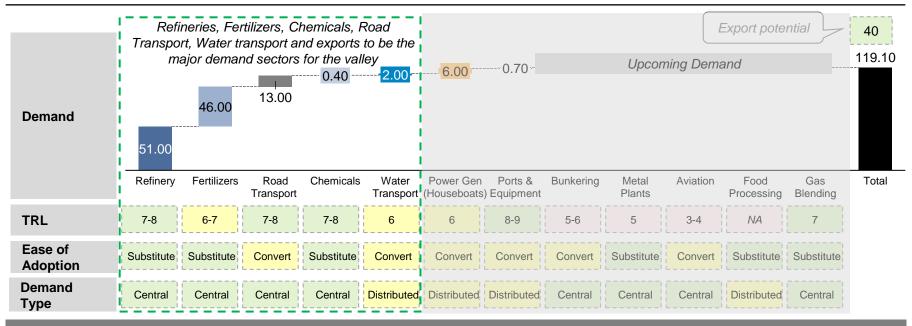
Global H₂ Landscape and Valley Focus

Kochi Hydrogen Valley - Summary

Kochi Hydrogen Valley - Design Choices

Anchor Sector Selection

Supply Side Configuration Selection


Kochi Hydrogen Valley - Background Information Kochi Hydrogen Valley - Global Valley Profiles Appendix

KL demand sector has a big head and a long tail

with 6 sectors being anchor off-takers (refinery, fertiliser, road transport, Water transport, chemicals and exports)

Kochi Valley | Demand Cluster

Sectors, Hydrogen Demand in kTPA

Refineries, fertilizers and chemicals use green hydrogen in their current processes. Road transport has high potential to decarbonise KL, waterways can drive traffic away from roads (reducing emissions) and the presence of Cochin Shipyard provides synergies for waterways. Export is an emerging use case and presence of two ports in KL provides synergies along with interests shown by private sector players

Opportunities and Challenges

Of the Kochi Valley

Parameters	Opportunities	Challenges
Use-case	• Existence of multiple use-cases in the region. Opportunities for both direct substitution use cases like refineries and fertilizers and new tech like FCEVs	Use-cases like waterways and exports does not exist currently and are untested hence emergence of demand depends on external factors as well
Demand	 Close to 120 kTPA potential demand with ~80% of the demand in direct use-cases Potential for demand from water transport and exports 	Concentration of demand sectors under single players in major sectors leading to concentration of risk, offtake stress and low willingness
Cost	 Kerala can produce green H₂ with India best RE in 2040 coupled with incentives reducing premiums, carbon costs (if present) can further make GH₂ competitive 	• Green H ₂ price premium to remain across most sectors even until 2040 leading to need for indirect support in terms of mandates, carbon tax etc
Regulatory Support	Central govt. focus on green hydrogen, announcement of incentives and plans for the development of the sector, state policy also upcoming	 Lack of well-defined decarbonisation targets and mandates on industries hindering calls to action Need for infrastructure development, standards etc
Technology Readiness	• Opportunity to capitalise on the technology know- how developed by Cochin Shipyard for developing H ₂ vessels for building H ₂ based water mobility	 Technology bottlenecks in offtake sectors like utilisation of GH₂ at small scales in fertiliser plants, development of storage & transmission

Refinery and Export are highly likely to adopt use of Green H₂

Out of the biggest 6 end-use cases, refinery and export have the highest propensity to adopt use of Green hydrogen

						Unknown Unf	avourable Me	dium Favourable
Sector	Use case	Current Grey H ₂ Demand (kTPA)	Premiums** INR/kg & INR/kr	n (bus & boats)	Regulatory support	Technology readiness	Off taker willingness	Criticality to valley
			<u>2025</u>	<u>2040</u>				
Refinery	Direct substitute	51	301	12	Medium - High	Medium	2.6	٢
fertiliser	Direct substitute	46	68	19	Medium	Low	1.8	J
Roadways	Fuel change/ new tech	13	EV: 15 to 24 Diesel: 18 to 27	EV: -7 to -1 Diesel: -18 to -12	Low	Medium	1.6	\bigcirc
Waterways	Fuel change/ new tech	2	EV: 117	EV: 18	Medium - High	Medium	1.8	ightarrow
Chemicals	Direct substitute	0.4	306	14	Very low	Medium	1.4	\bigcirc
Export	New area	40	NA	NA	Medium	To be tested	2	٩

89 Note: Demand basis current (2025) demand potential ; **: Economic case comparison for landed cost for direct substitution with low-cost grey hydrogen/derivatives; TCO for mobility case comparison with diesel (at cost increase) and EV; TCO for road is a one off niche case Source: MEC+ analysis

Economic case

Only switching buses to hydrogen fuel offers a net positive fuel cost in 2040, refinery and fertiliser is another borderline case

Sector	Metrics	Comparative	Economic case comparisons Unknown Unfavourable Medium Favourable				
Refinery	Feedstock cost	Grey H ₂	Premium in refinery sector against low-cost grey hydrogen declines by 96% to INR 12/kg in 2040				
fertiliser	Feedstock cost	Grey NH ₃	Premium in fertiliser sector against low-cost grey ammonia declines by 72% to INR 19/kg in 2040				
Roadways	тсо	Diesel and EV	Long range FCEV buses expected to be competitive with EV by 2040 by 4.5% by being INR 12/km more cost effective than EVs . HICE buses also expected to be competitive since 2040 by INR 7/km more cost effective than EVs. Both H_2 techs to be competitive than diesel				
Waterways	тсо	EV	Medium range FCEV vessels are expected to be competitive with EV towards 2040 however premiums still exist at INR 18/km (decline by 85% in 2040) , on development in refuelling infrastructure as well maturity in technology the costs can be brought down				
Chemicals	Feedstock cost	Grey H2	Premiums in chemical sector against low-cost grey hydrogen declines by 96% in 2040 . However, current procurement costs of HOCL is significantly lower than grey hydrogen, weakening the economic case				
Export	No comparison done	No comparative	No comparative				

Source: MEC+ analysis

Regulatory support

On the contrary, higher regulatory support is visible in refinery through corporate 10% adoption target and boats for decarbonisation of waterways in the state

Sector	Regulatory support score	Commentary on regulatory support and clarity	Unknown	Unfavourable	Medium	Favourable			
Refinery	Medium - High	Driver: Plans for GH ₂ mandates for all refineries at central level; defined timelines for decarbonisation goals at Inhibitor: No state specific mandates for refinery/carbon emission	all levels		n target by BF	PCL at			
fertiliser	Medium	percentage of GNH ₃ at central level; competitive bidding for D	iver: Targets to substitute import based NH_3 with GNH_3 at central level; plans to set mandate for a min. rcentage of GNH_3 at central level; competitive bidding for DAP & Urea fertiliser plants nibitor: No timelines for decarbonisation at FACT; no mandates						
Roadways	Low	Priver: Decarbonisation goal of transport sector at central, state and local levels hibitor: Lack of mandates for GH ₂ ; supporting environment for competing tech in EV; no clear ubsidies/incentives for GH ₂ uptake							
Waterways	Medium - High	Driver: Central plans to launch H_2 based ferries; targets to reduce GHG emissions; funds allocated for green corridor on west coast canal; carbon neutral targets; manufacturing benefits for GH_2 vessel Inhibitor: Inhibitors present only in terms of lack of mandates and targets at state and local levels							
Chemicals	Very low	Driver: Government plans to set up PLI for chemicals, no oth Inhibitor: Lack of mandates at all levels; no specific timelines chemical sector			specific incer	ntives for			
Export	Medium	Driver: Multiple proposals and developer interests in creating Inhibitor: Distributed and unclear timelines of demand aggre		NGHM targets					

Technology readiness

Production of green hydrogen is the only technologically mature part of the value chain across sectors; further in offtake, refinery & chemicals have relatively higher maturity due to direct fuel substitution

Medium

Favourable

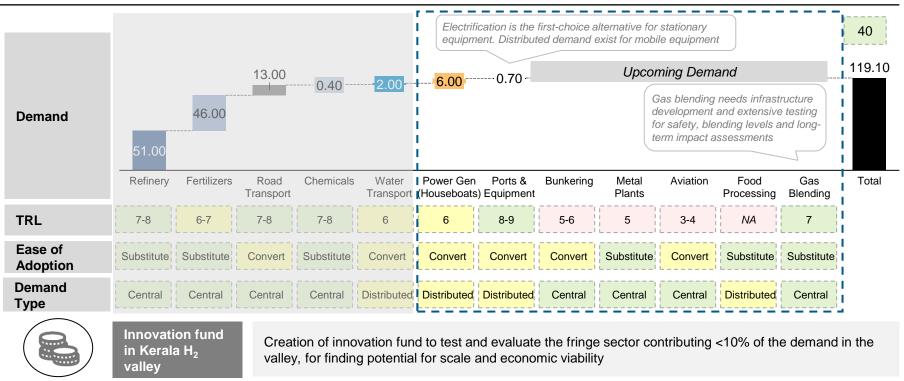
Sector	Production	Conversion/ Storage			Overall technology readiness
Refinery	8	NA	7-8	7	Technical readiness for technology shift from grey to green for Kochi refinery to be tested; currently pilots in regulated conditions – not scaled to regular operations
fertiliser	8	7-8	8-9	5	Feasibility and technical readiness for green scale $\rm NH_3$ production via RE to be tested
Roadways	8	6	NA	6-9	Overall nascent sector due to new fuel, assets and refuelling tech to be tested; safety standards to be well established
Waterways	8	6	NA	5-6	New design for larger capacities to be developed and tested; pilots demonstrated in regulated environments at only demonstration level, not scaled operations
Chemicals	8	NA	NA	7	Green hydrogen purity maybe a challenge; to be tested
Export	8	5-6	NA	To be tested	Standards, certifications and verifications to be set according to global standards for export

Note: Refer sector deep-dives for further information on sector wise technology readiness and appendix for TRL definitions 92 Source: MEC+ analysis

Offtake willingness

Overall offtaker willingness is low to moderate in the valley on a score of 4, with refinery having relatively higher willingness

Sector	Score	Offtake willingness score	Unknown	Unfavourable	Medium	Favourable			
Refinery	2.6	Driver: Plans for GH ₂ mandates for all refineries at central level; defined timelines for decarbonisation goals at all leve Inhibitor: No state specific mandates for refinery/carbon endetes for the endet endet endet endet endet endeted endet en	ls		by BPCL at	t corporate			
fertiliser	1.8	1.8 Driver: Targets to substitute import based NH ₃ with GNH ₃ at central level; plans to set mandate for min. percent of GHN ₃ offtake at central level; competitive bidding for DAP & Urea fertiliser plants Inhibitor: Undefined decarbonisation timelines at FACT; no mandates							
Roadways	1.6	Driver: Willingness to test pilot; decarbonisation steps take tech – expectation in hydrogen as well; rise in diesel costs Inhibitor: Lack of mandates for GH ₂ ; no direct use case of		-		ompetitive			
Waterways	1.8	Driver: Technology confidence due to Cochin Shipyard act carbon emission technologies; willing to test pilots Inhibitor: Long timelines for first operational boat/vessel; c	-						
Chemicals	1.4	Driver: Technology maturity; direct hydrogen use case Inhibitor: No specific timelines for decarbonisation goals; if financials; no adoption plans; no offtake timelines	no specific inc	entives for chemi	cal sector;	challenging			
Export	2	Driver: Global demand and requirement for green hydroge major ports; NGHM export plans and dialogue of GoI with s Inhibitor: The opportunity cost of subsidies for local econo	several countri	es; NH ₃ production		nce of 2			


Other sectors contribute to less than 10% demand potential

in the valley currently and are proposed to be a part of the innovation fund

Kochi Valley | Innovation Cluster

94

Sectors, Hydrogen Demand in kTPA

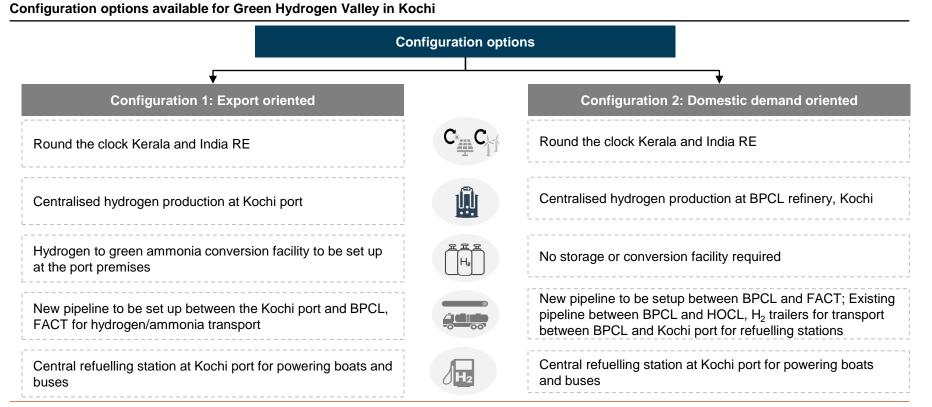
Global H₂ Landscape and Valley Focus

Kochi Hydrogen Valley - Summary

Kochi Hydrogen Valley - Design Choices

Anchor Sector Selection

Supply Side Configuration Selection


Kochi Hydrogen Valley - Background Information

Kochi Hydrogen Valley - Global Valley Profiles

Appendix

There are two ways to configure the valley

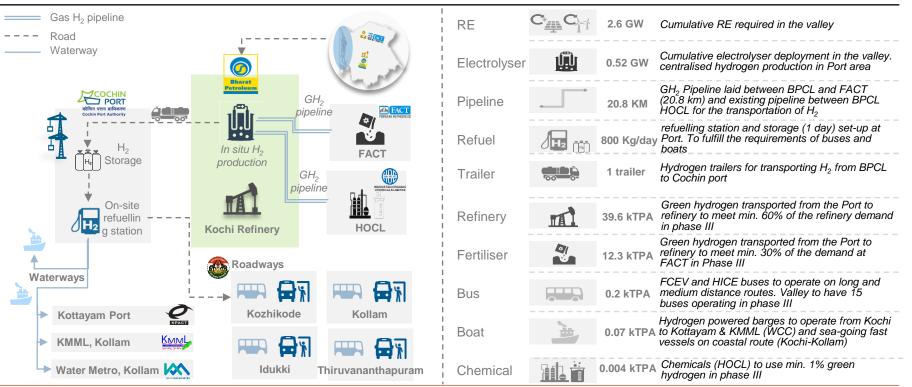
basis the electrolyser location and whether export sector is part of the valley or not

In configuration 1 electrolyser is placed at the port

with H₂ pipeline running to BPCL and LNH₃ pipeline running to FACT; the centralised refuelling infra is placed at the port itself

Kochi Green Hydrogen Valley | Total potential

Visualisation


97 Note: *Green Hydrogen Requirement for Ammonia production; LNH₃: Liquid Ammonia Source: MEC+ analysis

In configuration 2, electrolyser is placed at BPCL

with H₂ pipeline running to FACT and trailers running up to port for the refuelling infra structure

Kochi Green Hydrogen Valley | Total potential

Visualisation

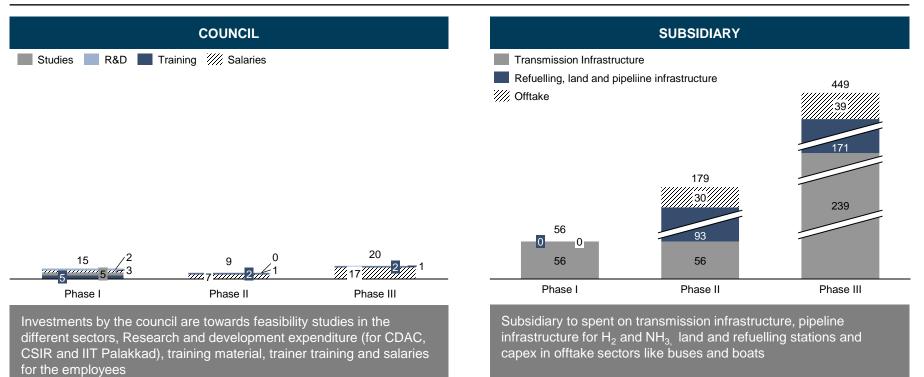
98

Overall configuration 1 offers lower landed cost

for most sectors in the valley, if trunk infrastructure is supported by the government

Sector wise comparison of landed costs in 2040 with respect to trunk infrastructure support from govt. *INR/kg*

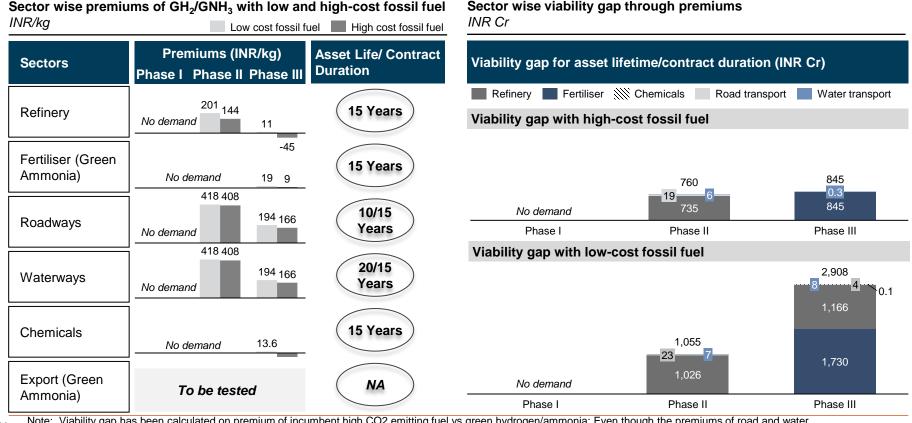
	Sectors		Case 1: With trunk infrastructure support from government		Case 2: Without trunk infrastructure support	
			Configuration 1	Configuration 2	Configuration 1	Configuration 2
 With trunk infrastructure support refers to absorption of costs (refuelling, grid infra, pipeline and storage) by the government and only OPEX borne by developer Without trunk infrastructure refers to no cost absorption by the government 	[Fertiliser (Green Ammonia)	48.19	48.35	48.21	48.71
		Refinery	214.45	213.02	215.97	213.02
		Road Transport	294.42	314.10	413.59	448.18
	re	Water Transport	294.42	314.14	413.59	449.19
		Chemicals	215.97	216.62	218.05	218.14
	[Export (Green Ammonia)				


Note: All landed costs are considered for Phase 3 of the valley, Electrolyser size for configuration 1 is 0.9 GW, whereas for configuration 2 it is 0.4 GW; Banking is considered(1000 hour yearly), Trunk Infrastructure considered: H₂ refuelling, Grid infra, pipelines and H₂ storage; only OPEX is considered as part of landed cost Source: MEC+ analysis

Investments in the valley is carried out by Council and Subsidiary

Council allocates funds for feasibility studies, R&D, training and manpower; Subsidiary allocates funds for infrastructure and offtake

Bifurcation of Government Spending


In INR Crore

100 Note: Spent on R&D to include allocations to Cochin Shipyard; Salaries considered for 6,8 and 10 employees within council Source: Govt. of Kerala; MEC+ analysis

Premiums exist across all phases for low-cost fossil fuel

leading to a total viability gap for off-takers of INR 1055 and 2908 crores in different phases

101 Note: Viability gap has been calculated on premium of incumbent high CO2 emitting fuel vs green hydrogen/ammonia; Even though the premiums of road and water transport are high, the viability gap is low due to different fuel efficiencies of diesel vs hydrogen vehicles considered Source: MEC+ analysis

High viability gap exists in the total investments

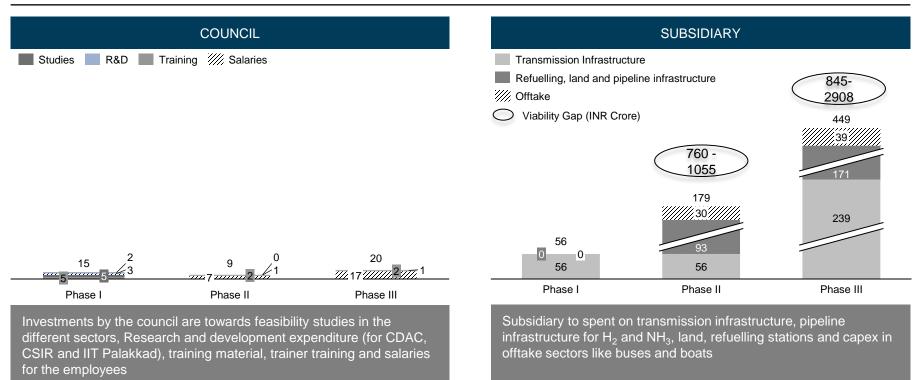
with renewable energy, electrolyser and storage unit contributing the highest

Investment additions required in phase I, II, and III **INR Crore** Biggest contributing factors in the investment costs H2 Production RE, Electrolyser and storage account for ~90% of the investments Grid Transmission Infrastructure H2 & NH3 Infrastructure (Transport, Storage & refueling) Renewable energy accounts for around 70% ٠ //// Offtaker assets (vessels/ buses) of the total investment requirement in phase 3. Renewable CAPEX for RE Government can support the investments for Energy renewable energy to bridge the viability gap 10.948 5,130 Of the rest of the investments, electrolyser ٠ accounts for around 10% of the total Electrolyser investments required. Government can support this viability gap by providing some equity funding for the electrolyser 836 1.389 239 In the H₂ infrastructure, storage units holds for ٠ 903 the maximum contribution. Overall, a storage Storage unit accounts for 7% of the total investment 2,194 669 costs needed which if supported by the 30 56 159 government can reduce the viability gap 56 424

102 Note: Storage accounts for INR 1088 Cr in the H₂ and NH₃ Infra cost in phase III, investments are inclusive of land Source: Refer Appendix; MEC+ analysis

Phase III

Phase II


Phase I

The government can reduce the burden on off-takers

by addressing the viability gaps created from RE, electrolyser and storage over and above the trunk infrastructure cost

Bifurcation of Government Spending

In INR Crore

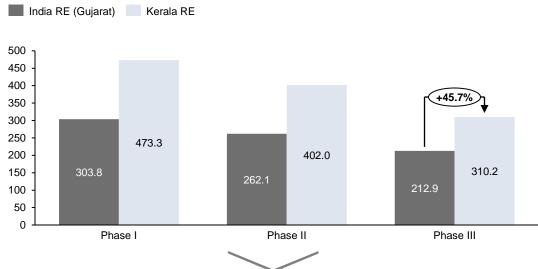
103 Note: Spent on R&D to include allocations to Cochin Shipyard; Salaries considered for 6,8 and 10 employees under the council Source: Govt. of Kerala; MEC+ analysis

The landed cost is sensitive to largely 3 factors

and is significant as all the values discussed so far are sensitive to a specific configuration of landed cost

Three factors affecting landed cost of green hydrogen in the valley and selections made for Kerala							
	RE plant location	Banking provision	utilisation of refuelling infrastructure				
Description	 The geographic location of the RE plant significantly impacts the cost. Proximity to resources like solar, wind, etc. influences the energy input required for producing green hydrogen Higher CUF signifies better utilisation of RE resources. It directly impacts the amount of electricity available for green hydrogen production. Selecting locations with higher CUF ensures a more consistent and abundant energy supply, reducing the total systems cost 	 Banking provisions allow for the management of energy flow and account for variations in energy production and consumption Integrating various sources, such as solar, wind, and traditional power generation, with intermittent nature of availability, requires standardized procedures Adapting the grid infrastructure to accommodate bidirectional energy flow and storage requires upgrading systems to handle distributed generation and storage integration requires significant capital and planning 	 utilisation of refuelling infrastructure at scale positively impacts cost efficiency. Higher utilisation rates of refuelling stations lead to better economies of scale, reducing the perunit cost of hydrogen dispensed, making it more competitive By capitalizing on scale benefits, the utilisation of refuelling infrastructure becomes a pivotal factor in reducing the landed cost of green hydrogen in the valley, making it a more accessible and economically feasible energy solution 				
Cases	India RE	1000 hours banking	100% utilisation				
	Kerala RE	4000+ hours banking	80%, 60%, 40% utilisation				

Source: MEC+ analysis

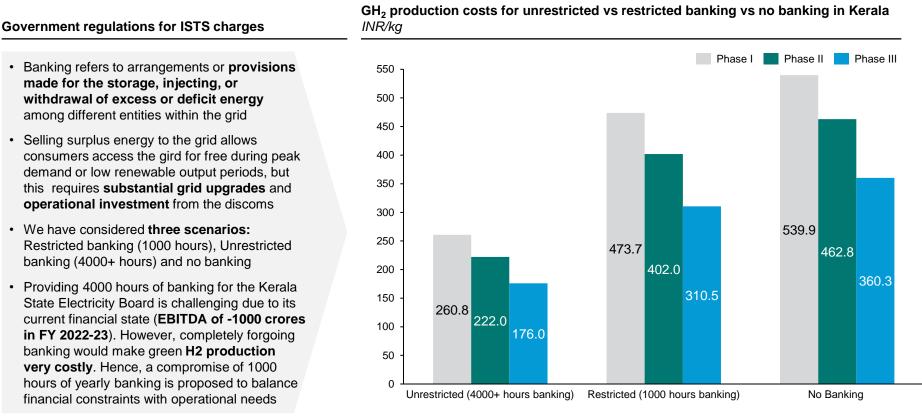

Location of RE plant

The production cost can vary by ~46% in Phase III if we were to use KL RE instead of India RE

Comparison of India and Kerala RE cost

- Areas abundant in solar, wind, or hydroelectric resources allow for more efficient and cost-effective hydrogen production due to readily available RE sources. E.g.: Rajasthan, Gujarat, benefit from vast land ideal for large-scale RE projects, thus reducing energy production costs
- Kerala's topography, with hilly terrain and unique weather patterns, affects the efficiency of solar and wind energy projects. Variations in weather conditions can impact the reliability and consistency of energy generation, affecting overall production costs
- While Kerala possesses significant RE potential, addressing the challenges associated with location constraints is essential to enhance the cost-effectiveness. Strategic planning, innovative technologies, and supportive policies are pivotal in harnessing Kerala's RE

Production cost of RE in India vs Kerala INR/kg



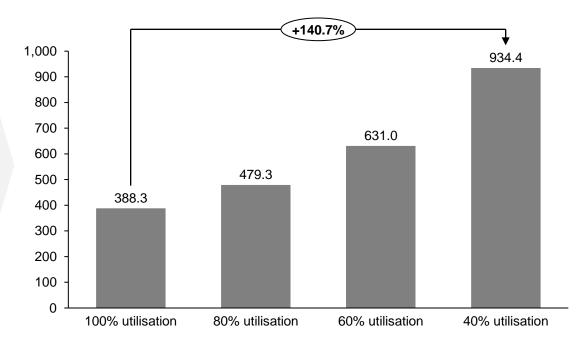
- The production cost between India and Kerala RE varies by 43.6%, 23.4% and 35.6% in Phase I, II and III respectively
- Hence, it is suggested to source India's best resource renewable energy in phase-3 during scale up of the green hydrogen valley

105 Note: In Phase 1, Phase 2 the size of electrolyser taken is 50 MW, Phase 3 is 0.9 GW. Hourly Settlement is considered with 1000-hour yearly banking, Kerala Solar + pumped hydro is considered, For India RE, Gujarat Solar + Wind + Battery resource is considered Source: MEC+ analysis

Banking provision

Availability of unrestricted banking can lower production costs by ~34% in Phase III, however, this is difficult for KSEB; and a no banking scenario is quite expensive, hence capping of banking at 1000 annual hours is suggested

Note: ISTS losses and Intra-state transmission charges are considered in the calculation, Natural gas price are considered at 10 USD/ MMBTU in 2025 and 12 USD/MMBTU in both 2030 and 2040; Plant configuration is Solar + pumped hydro based out of Kerala Source: IGEF-MEC+ Model: PIB: ISTS Charges


refuelling infra utilisation

The landed costs is highly sensitive to refuelling infra utilisation, lower utilisation can have ~140% higher costs | refuelling infra has been sized to ensure 100% utilisation in all configurations

Refuelling infrastructure

400 kg refuelling costs at different utilisation rates
INR/kg

- As the number of refuelling stations increases, initial setup costs get distributed across a larger network. This decreases the per-unit cost of establishing and operating each station, making the overall infrastructure more costefficient
- A higher utilisation of the refuelling would mean lower per unit costs whereas lower utilisation would mean high per unit costs for a fixed rate of return
- We have considered 4 scenarios for arriving at refuelling costs: 40% utilisation, 60% utilisation, 80% utilisation and 100% utilisation

107 Note: Cost of refuelling at a 400 kg hydrogen station is influenced by its utilisation rate. A fixed margin on the investment directly affects hydrogen (H₂) cost. The compressor energy is calculated 0.26 kWh/kg H₂, decreases with limited H₂ utilisation, the savings of which have also been considered Source: MEC+ analysis

Global H₂ Landscape and Valley Focus

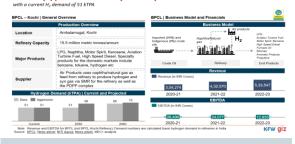
Kochi Hydrogen Valley - Summary

Kochi Hydrogen Valley - Design Choices

Kochi Hydrogen Valley - Background Information

- Sectoral Deep Dives
- Kerala GH₂ Potential
- Supply Side Economics

Kochi Hydrogen Valley - Global Valley Profiles

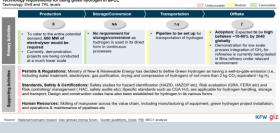

Appendix

6 parameters were compared across sectors

We have compared 6 parameters across sectors to objectively analyse suitability for valley

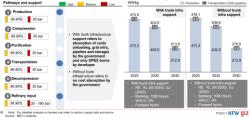
Parameters analysed across the 6 sectors

Refinery || BPCL is the only refinery in Kochi



Off-taker profile and demand potential

Technology readiness is low to medium

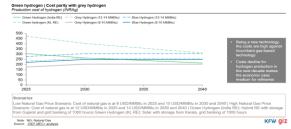

Process integration for small scale demonstration in initial phase is a key requirement

Technology requirements for using green hydrogen in BPCL Technology Shift and TRL levels

Technology readiness and adaptability

Actual landed cost of green H₂ for BPCL range: 213.9 to 216 INR/Kg The actual landed cost of green hydrogen for BPCL could range anywhere from 213.9 to 216 INR/Kg in 2040 basis government support Landed Cost of Hydroge Pathways and support

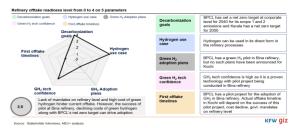
Supply side infrastructure requirement & TCO


Regulatory maturity is medium-high

Some central as well as corporate level mandates/targets exist for refineries which can be further strengthened by state regulations Central, state and company level policies for decarbonizatio Mandate/incentive Ma Announced Goals and Pol present for Hs present at a broader level present Central State RPCL. Decarbonization Net zero goals at a corporate level Net zero by 2070 for all industries Net zero by 2050 for all industrie fans to set 3-year carbon benchmarks Company plan to achieve net-zero Imission & reduction targets for petrochemical No specific targets emissions by 2040 in Scone 1 and reduction target Scope 2 at a corporate level Currently a part of obligated sector under PAT scheme for energy efficient osed to be part of future carbon tradin Carbon pricing scheme. Penalties to be set under carbon emission trading scheme ubsidy on H No specific subsidies for GH-PLIs available for GH₂ production Not applicable production are available INR 12,120 Cr for equipment efficiency apex/investr No specific fund commitment for No specific commitment RE project. Petrochemical projects. Biofuel projects (2022-23) Plans to set a 10% GH₂ offtake for Plans of using 10% GH₂ in all refineries combined by 2030. 28 kTPA lydrogen nandate/plans fineries from 2023-24 rising to 25% in No specific commitments (Bina/Kochi/Mumhai) by 2030 Overall regulatory score KFW **giz** Note: Perform Achieve and Trade. Source: National Green Hydrogen Mission: Govt. of Kerala: BPCL: News Articles: MEC+ analysis

Regulatory Support and driver

Economic case is medium


Green H2 against grey/blue H2 can become competitive in the next decade depending on gas prices and carbon scenario

Economic case for adoption

Offtaker willingness is medium to high

Success of pilot in Bina refinery and green hydrogen costs will determine offtake

Off-taker readiness and considerations

Global H₂ Landscape and Valley Focus

Kochi Hydrogen Valley - Summary

Kochi Hydrogen Valley - Design Choices

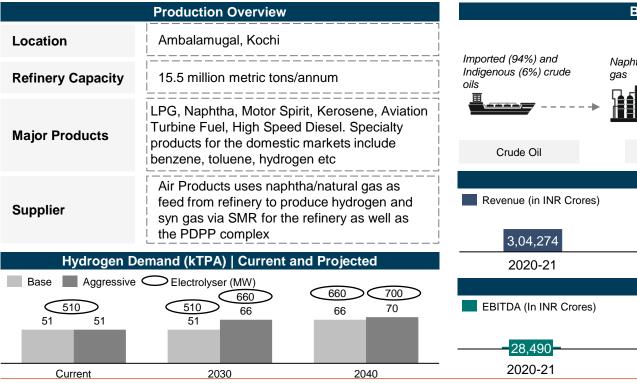
Kochi Hydrogen Valley - Background Information

Sectoral Deep Dives

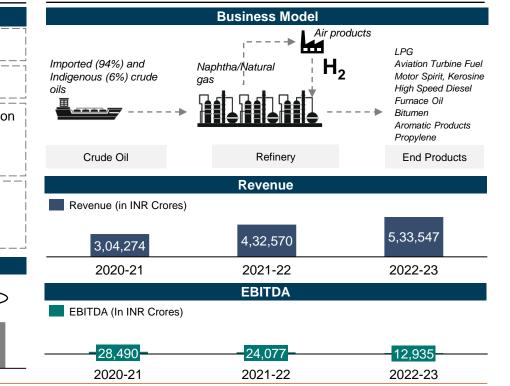
- Kerala GH₂ Potential
- Supply Side Economics

Kochi Hydrogen Valley - Global Valley Profiles

Appendix


REFINERY SECTOR

111

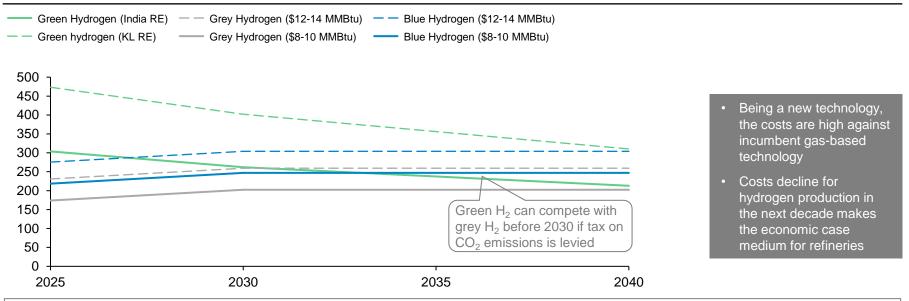

Refinery | BPCL is the only refinery in Kochi

with a current H_2 demand of 51 kTPA

BPCL – Kochi | General Overview

BPCL | Business Model and Financials

112 Note: Revenue and EBITDA for BPCL (not BPCL-Kochi Refinery); Demand numbers are projected basis hydrogen demand in refineries in India Source: <u>BPCL</u>; <u>News article</u>; <u>NITI Aayog</u>; MEC+ analysis

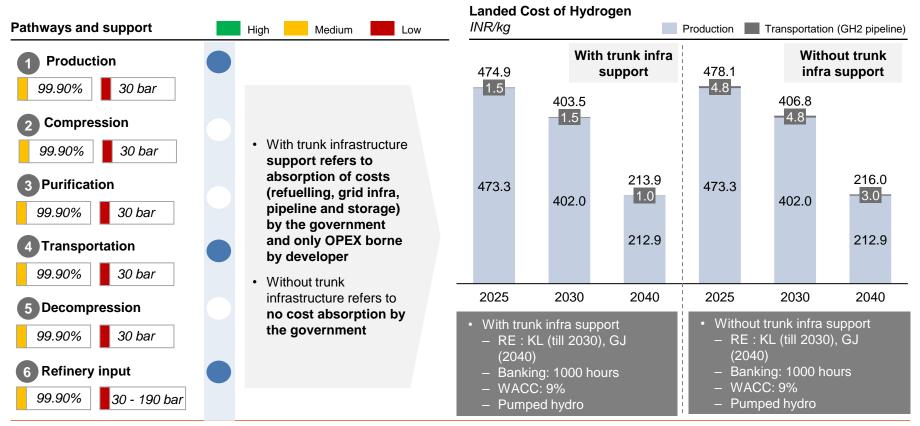


Economic case is medium

Green H₂ against grey/blue H₂ can become competitive in the next decade depending on gas prices and carbon scenario

Green hydrogen | Cost parity with grey hydrogen

Production cost of hydrogen (INR/kg)


Scenarios

Low Natural Gas Price Scenario: Cost of natural gas is at 8 USD/MMBtu in 2025 and 10 USD/MMBtu in 2030 and 2040 | High Natural Gas Price Scenario: Cost of natural gas is at 12 USD/MMBtu in 2025 and 14 USD/MMBtu in 2030 and 2040 | Green Hydrogen (India RE): Hybrid RE from Gujarat and grid banking of 1000 hours| Green Hydrogen (KL RE): Solar with pumped hydro storage from Kerala, grid banking of 1000 hours

113 Note: NG- Natural Gas Source: <u>IGEF-MEC+ analysis</u>

Actual landed cost of green H₂ for BPCL range: 213.9 to 216 INR/Kg

The actual landed cost of green hydrogen for BPCL could range anywhere from 213.9 to 216 INR/Kg in 2040 basis government support

114 Note: For detailed analysis on landed cost refer to section supply side economics Source: MEC+ analysis

Regulatory maturity is medium-high

Some central as well as corporate level mandates/targets exist for refineries which can be further strengthened by state regulations

Central, state and company level policies for decarbonisation

Announced Goals and Policies

Mandate/incentive Mandate/incentive No mandate/incentive present for H₂ present at a broader level present

	Central	State	BPCL	
Decarbonisation goal	Net zero by 2070 for all industries	Net zero by 2050 for all industries	Net zero goals at a corporate level by 2040	
Emission reduction target	Plans to set 3-year carbon benchmarks & reduction targets for petrochemical firms	No specific targets	Company plan to achieve net-zero emissions by 2040 in Scope 1 and Scope 2 at a corporate level	
Carbon pricing	Currently a part of obligated sector under PAT scheme for energy efficiency and proposed to be part of future carbon trading scheme. Penalties to be set under carbon emission trading scheme			
Subsidy on H ₂ costs	PLIs available for GH ₂ production	No specific subsidies for GH ₂ production are available	Not applicable	
Capex/investment commitments	No specific fund commitment for refineries	No specific commitments	INR 12,120 Cr for equipment efficiency, RE project, Petrochemical projects, Biofuel projects (2022-23)	
Hydrogen mandate/plans	Plans to set a 10% GH_2 offtake for refineries from 2023-24 rising to 25% in five years in discussion	No specific commitments	Plans of using 10% GH ₂ in all refineries combined by 2030. 28 kTPA (Bina/Kochi/Mumbai) by 2030	
Overall regulatory score				

115 Note: Perform Achieve and Trade Source: <u>National Green Hydrogen Mission; Govt. of Kerala; BPCL; News Articles; MEC+ analysis</u>

Technology readiness is low to medium

Process integration for small scale demonstration in initial phase is a key requirement

Technology requirements for using green hydrogen in BPCL

Technology Shift and TRL levels

chnol	ogy Shift and TRL levels			Unfavourable Medium Favourable
	Production	Storage/Conversion	\rangle Transportation \rangle	Offtake
es	8	NA	7-8	7
Primary Activities	 To cater to the entire potential demand, 660 MW of electrolyser would be required Currently, demonstration projects are being conducted at a much lower scale 	 No requirement for storage/conversion as hydrogen is used in its direct form in continuous processes 	• Pipeline to be set up for transportation of hydrogen	 Adoption: Expected to be high between ~10-60% by 2040 globally Demonstration for low scale process integration of GH₂ for refineries is currently being tested in Bina refinery under relevant environment

Permits & Regulations: Permits required to setup a pipeline for transportation of green hydrogen; setting up a centralised electrolyser; regulations required to define green hydrogen aligned with the central policies

Standards, Safety & Certifications: Safety studies for hazard identification (HAZID, HAZOP etc), Risk evaluation (QRA, FERA etc) and Risk controlling/ management (HAC, safety audits etc); Specific standards such as CGA H-5, are applicable for hydrogen handling, storage and transport; Design and construction codes have also been established for hydrogen in its various forms

Human Resources: Skilling of manpower across the value chain, including manufacturing of equipment, green hydrogen project installation, and operations & maintenance of pipelines etc.

Supporting Activities

Offtaker willingness is medium to high

Success of pilot in Bina refinery and green hydrogen costs will determine offtake

Refinery offtake readiness level from 0 to 4 on 5 parameters

Source: Stakeholder Interviews; MEC+ analysis

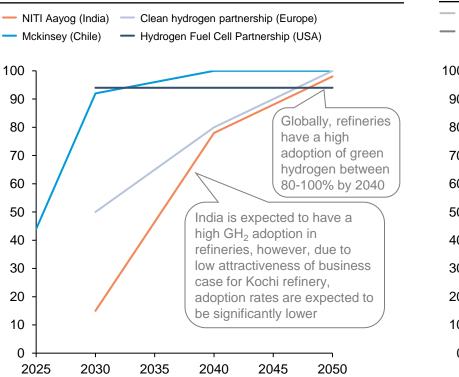
Adoption of green hydrogen in refineries can be fast tracked

by addressing concerns for new process integration and creating refinery level mandates

Hydrogen offtake in Refineries

Drivers and Inhibitors

		GH ₂ based hydrogen production has high technology maturity, cost competitiveness in the next decade and easy process integration	
Ł	Economic	 Green hydrogen would be cost competitive with grey hydrogen towards 2030 Stranded assets in the industrial gas conformation for current hydrogen production 	omplex
Ŕ	Regulations	 The central government plans to set a 10% GH₂ offtake for refineries BPCL plans to use 10% GH₂ combined in all its refineries by 2030 No regulations for creation of demand of mandates, penalties No regulations for creation of green h in terms of investments 	
(()	Technical	 Current pilot demonstration in Bina refinery and studies at company level conducted New integration for Kochi Refinery for r Set up of new pipeline will require feas be conducted 	
\checkmark	Offtaker willingness	 BPCL has a net zero target for 2040 and adoption of green hydrogen is crucial for this target BPCL already has a GH₂ pilot in its Bin refinery. Currently no plans and timelin been outlined for offtake in Kochi 	


118 Note: TRL: Technology Readiness Level Source: <u>BPCL; News Articles;</u> MEC+ analysis

Adoption of Green H₂ in refineries are very high globally by 2040

driven by self-targets and business case, it is expected to be between 5-40 kTPA in 2030 to 2040

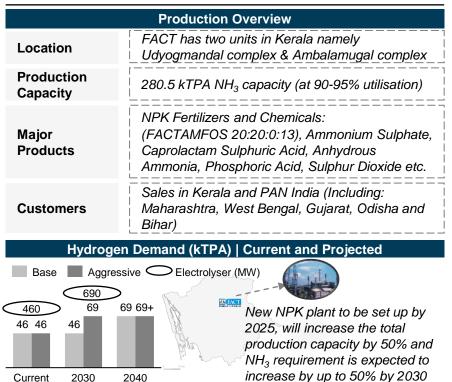

Adoption rate of hydrogen in refinery

% of total demand

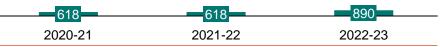
Expected adoption rates for refinery in the valley

As % of total demand and demand in kTPA

 119
 Note:
 Base and Aggressive cases are considered based on net zero targets of Kerala


 Source:
 <u>NITI Aayog; HFCP; McKinsey; Clean Hydrogen Partnership; MEC+ analysis</u>

Fertiliser || FACT Kochi is the only fertiliser producer in Kerala


requiring 46 kTPA of Hydrogen

FACT | General Overview

121 Note: Approx 60-70 TPD NH₃ equivalent of hydrogen is consumed in chemicals production (~12 TPD Green H₂); Source: <u>FACT Annual Reports</u>; Stakeholder Interviews; MEC+ analysis

FACT | Business Model & Financials **Business Model** Govt. Import of LNG Import of Ammonia Subsidies (\$) NH₃ In-house Ammonia & fertiliser Production End User Revenue Revenue (in INR Crores) 6,198 4,425 3,259 2020-21 2021-22 2022-23 **EBITDA** EBITDA (In INR Crores)

Decarbonisation | Different pathways for fertilizers

Available Pathways

This pathway ensures control over

H₂ adoption would be small (need

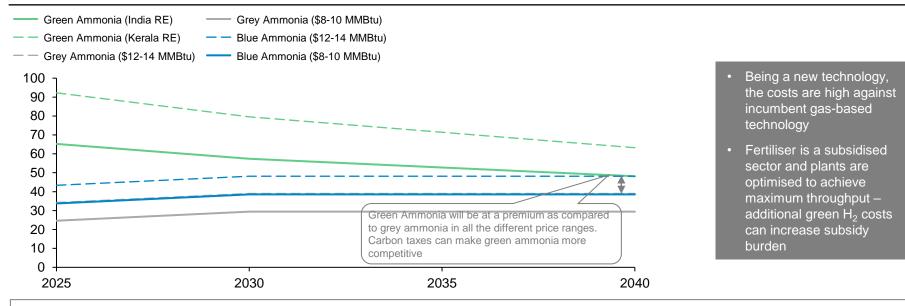
technical assessment)

supply however plant size based on

transportation infrastructure and

development of port infrastructure

 This pathway ensures feasible NH₃ plant sizes and co-located hydrogen and ammonia production not requiring expensive H₂ pipelines

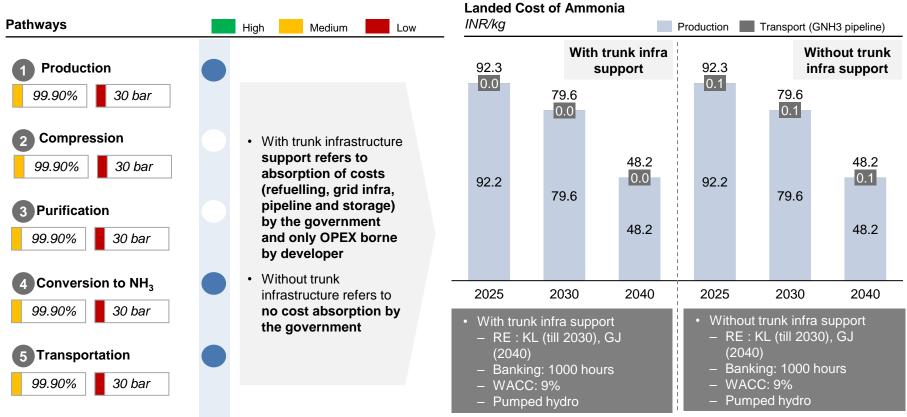

122 Note: Prodⁿ: Production; Currently minimum size of ~100kTPA NH₃ plant would be required for ammonia production process technology Source: MEC+ analysis

Economic case is low

On comparison with grey ammonia, green ammonia is at price premium excluding carbon taxes scenario across all phases

Green Ammonia | Cost parity with grey ammonia

Production cost of ammonia per kg (INR/kg)


Scenarios

Low Natural Gas Price Scenario: Cost of natural gas is at 8 USD/MMBtu in 2025 and 10 USD/MMBtu in 2030 and 2040 | High Natural Gas Price Scenario: Cost of natural gas is at 12 USD/MMBtu in 2025 and 14 USD/MMBtu in 2030 and 2040 | Green Ammonia (India RE): Hybrid RE from Gujarat and grid banking of 1000 hours| Green Ammonia (KL RE): Solar with Pumped hydro storage from Kerala and grid banking of 1000 hours

123 Note: NG- Natural Gas Source: <u>IGEF-MEC+ Model</u>

Cost of Green Ammonia is in a close range

The cost of green ammonia comprises of NH₃ conversion & transportation cost leading to a cost of 48.20 INR/Kg in 2040

124 Note: NH₃ transport through pipeline is a mature technology & is done in significant scale as such per unit cost of ammonia is low; For detailed analysis on landed cost refer to section supply side economics Source: <u>IGEF-MEC+ Model</u>; MEC+ analysis

Policy maturity is medium

Support at central level exists for DAP & urea-based plants but no mandates exist for fertiliser sector in Kerala as of now

Central, state and company level policies for decarbonisation Announced Goals and Policies

Mandate/incentive Mandate/incentive No mandate/incentive present for H₂ present at a broader level present

	Central	State	FACT	
Decarbonisation goal	Net zero by 2070 for all industries	Net zero by 2050 for all industries	Plans present but no fixed timelines defined yet	
Emission reduction target	No targets are announced	No targets announced yet	Plans present but no fixed timelines defined yet	
Carbon pricing	Currently a part of obligated sector under PAT scheme for energy efficiency and proposed to be part of future carbon tra- scheme. Penalties to be set under carbon emission trading scheme			
Subsidy on H ₂ costs	PLIs available for green hydrogen production	No subsidies are available	Not applicable	
Capex/investment commitments	2 plants each for production of Green H_2 based Urea & DAP to be set up via competitive bidding	No specific incentives	Plans to setup 6 MW solar for captive consumption	
Hydrogen mandate/plans	Plan for 5% offtake from 2023-24 rising to 20% in 5 years. Substitute NH_3 based fertiliser imports with domestic green NH_3 based fertilizers	No mandates	No mandates/plans	
Overall regulatory score				

125 Note: NH₃: Ammonia; PAT: Perform Achieve and Trade Scheme; SIGHT Scheme in place for green hydrogen production incentives Source: <u>National Green Hydrogen Mission</u>; <u>Govt. of Kerala; News Articles</u>; FACT; MEC+ analysis

Technology readiness is low to moderate

Green NH₃ prod. using RE based green H₂ needs large scale demonstrations and tech development for small-scale plants

Technology requirements for using green hydrogen in FACT

Technology Shift and TRL levels

hnol	ogy Shift and TRL levels			Unfavourable Medium Favourable
	Production	Storage/Conversion	Cransportation	Offtake
es	8	7-8	8-9	5
	 To cater to the total demand, 690 MW of electrolyser would be required Currently, demonstration projects are being conducted at a much lower scale 	 Storage: Not required Conversion: NH₃ conversion needs large scale demonstrations & small-scale plant designs (addressing challenges in performance and non-steady operations) 	 NH₃ Pipeline: Pipeline is required to transport NH₃ from port to FACT The global transportation of ammonia by pipeline is already a well-developed technology 	• Process integration: The impact on NPK and DAP production processes for utilising GH ₂ at low scale is untested

Permits & Regulations: Ministry of New & Renewable Energy has decided to define Green Hydrogen as having a well-to-gate emission (i.e., including water treatment, electrolysis, gas purification, drying and compression of hydrogen) of not more than 2 kg CO2 equivalent / kg H₂); Permits for ammonia production and handling at ports; permission for setting up a pipeline for transport

Standards, Safety & Certifications: Safety studies for hazard identification (HAZID, HAZOP etc), Risk evaluation (QRA, FERA etc) and Risk controlling/ management (HAC, safety audits etc); Specific standards such as IS 660 (1963), EN 378 are applicable for ammonia handling, storage and transport; Design and construction codes are also present for ammonia

Human Resources: Employees need skill development for new processes & areas, high-level experts are vital for setting up the electrolyser and green ammonia plant, creating standard protocols and guidelines, need expertise in radiography, non-destructive testing in deployment of pipelines

Note: TRL for ammonia production varies between 5-9 globally considering factors like scale, variability of RE etc 126 Indo German energy forum; PIB; Cluster guidelines, Unido; Joule; IEA; The Royal Society; MEC+ analysis Source:

Off-taker willingness is medium

Need decarbonisation targets and capex investments for green hydrogen conversion

Decarbonisation goals Hydrogen use case Green H₂ Adoption plans FACT has taken steps towards decarbonisation Decarbonisation via RE integration (Rooftop RE), plans more RE Green H₂ tech confidence First offtake timelines qoals (Floating Solar - 6MW), however feedstock-Decarbonisation based CO₂ emission reduction do not have a goals 4 fixed timeline Direct use case for substitution of grey ammonia Hydrogen use to green ammonia exists. However, willingness to Hydrogen case uptake will be basis development in technology, First offtake use case mandates and cost competitiveness of green timelines ammonia Current plans limited to import substitution. Future **Green H**₂ willingness to uptake basis cost competitiveness adoption plans exists. Adoption to depend on govt. mandates Tech. in demonstration stage. Need proven Green H₂ tech technology providers. Some process changes confidence GH₂ tech required for small scale demonstration and **GH**₂ Adoption confidence stranded assets are a challenge plans No fixed timelines set. Cost declines and govt. First offtake CAPEX for new unit to test green hydrogen conversion to mandates can drive adoption in 2030, but final 1.8 timelines ammonia, sunk cost of existing unit and lack of mandates product (fertiliser) is subsidised which may impact mandate creation

Fertiliser offtake readiness level from 0 to 4 on 5 parameters

Source: Stakeholder interviews; MEC+ analysis

GH₂ tech and economics are not becoming favorable for adoption

government interventions on these can support unlock the demand

Hydrogen offtake in Fertilizers

Drivers and Inhibitors

		GH ₂ based fertiliser provide medium technology maturity, cost competitiveness in the next two decades, and import substitution	Require government intervention on subsidy, asset depreciation, and infrastructure
\gtrless	Economic	 Green ammonia could become competitive with grey ammonia in a scenario where carbon emissions are taxed 	 Price sensitivity of green hydrogen/ammonia for fertiliser manufacturing Additional CAPEX requirement for new unit
Ŕ	Regulations	 Targets to substitute imports of ammonia Plans for setting up green H₂ and green NH₃ plants through competitive bidding 	 No clear mandates No pilots suggested for NPK based fertilisers in NGHM No clear goals for decarbonisation or adoption of green ammonia at state or company level
(j) (j)	Technical	 Studies being carried out for small scale green ammonia produciton plants globally 	 No studies done on a company/state level for integration of green ammonia into current process/new green ammonia plants
\checkmark	Offtaker willingness	 Initial plans for import substitution Possibility of green H₂ use in chemicals division Offtaker willingness to study new technology 	 No defined timelines for decarbonisation exist Need for technology and integrators Clarity on the future of stranded assets

128 Note: TRL – Technology Readiness Level; NGHM: National Green Hydrogen Mission; BAU: Business as Usual Source: <u>National Green Hydrogen Mission;</u> Interviews; <u>Frazer-Nash</u>; MEC+ analysis

Adoption of Green H₂ in fertilizers are high globally towards 2040

adjusting for the adoption in Kerala the Green H₂ demand is expected in range 18% to 36% of the total demand in 2040

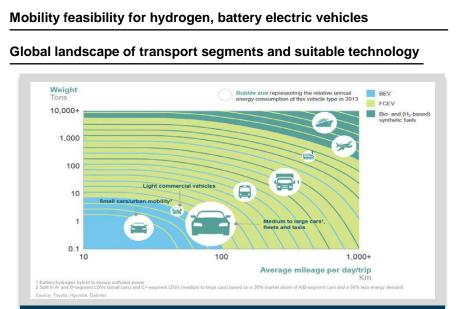
Adoption rate of hydrogen in fertiliser units Expected adoption rates for fertilizers in the valley As % of total demand and demand in kTPA % of total demand **Base Case Scenario** Clean hydrogen partnership (Europe) NITI Aayog (India) Aggressive Case Scenario Mckinsey (Chile) Hvdrogen Fuel Cell Partnership (USA) Green Hydrogen Demand (Base Case) Globally adoption Green Hydrogen Demand (Aggressive Case) rates in fertilizers are 25 25 100 high towards 2030 and 40 36% 2040 90 35 80 20 30 70 25 60 15 12 18% 50 20 In India, adoption is 40 10 15 expected to be on the 30 lower end. This gap could 9% 6 10 be due to the gas prices 20 5 and heavily subsidized 5 nature of the end output 10 0% 0 0 0 2025 2030 2035 2040 2045 2050 2025 2030 2040

Note: Base and Aggressive cases are considered based on the high/low natural gas prices and price premiums for grey ammonia, net zero targets of Kerala and valley specific parameters; a 10-year expansion plan lag is considered in base case – potential demand: 2030(46 kTPA) and 2040 (69 kTPA) Source: NITI Aayog; McKinsey; HFCP; Clean Hydrogen Partnership; MEC+ analysis

ROAD TRANSPORT

4 competing technologies exist in mobility use case

for low/no emission technologies in buses

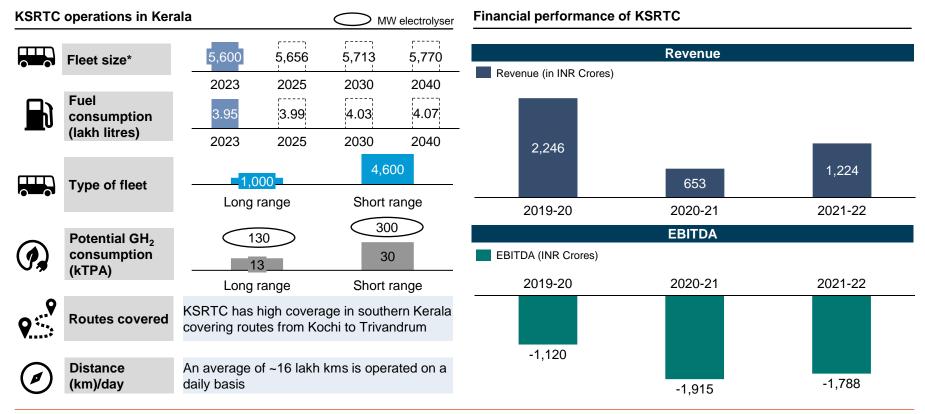

Types of zero emission technologies for buses

	Retrofitted HICE	Hydrogen ICE	Hydrogen FCEV	Electric
Driving Range (km)	280-300 km (30 kg tank)	280-300 km (30 kg tank)	350-500 km (30-40 kg tank)	250 Kms (260 kWh Battery)
Refuelling Time	20-30 minutes	20-30 minutes	20-30 minutes	90 minutes (Fast Charging)
Load (for maximum efficiency)	Medium to high	Medium to high	Low to medium	Low
Capex (INR)	0.1-0.3 Crore*	0.7-0.8 Crore	2 Crore	1.1 Crore
Infrastructure Requirement	H ₂ distribution and refuelling infrastructure	H ₂ distribution and refuelling infrastructure	H ₂ distribution and refuelling infrastructure	Charging Infrastructure and grid upgrades
Technology readiness level (heavy duty vehicles)	5-6	6-7	8-9	9
Commercial readiness in India	Preliminary development	Pilots demonst. in trucks	Pilots being conducted	Multiple tenders awarded

131 Note: *CAPEX for retrofitted ICE: Development phase = 0.3 crore, Deployment phase = 0.1-0.2 crore Source: <u>Green hydrogen industrial cluster guidelines; H₂IQ; NREL;</u> Primary; MEC+ analysis

Globally, heavy duty transport makes a strong case for hydrogen

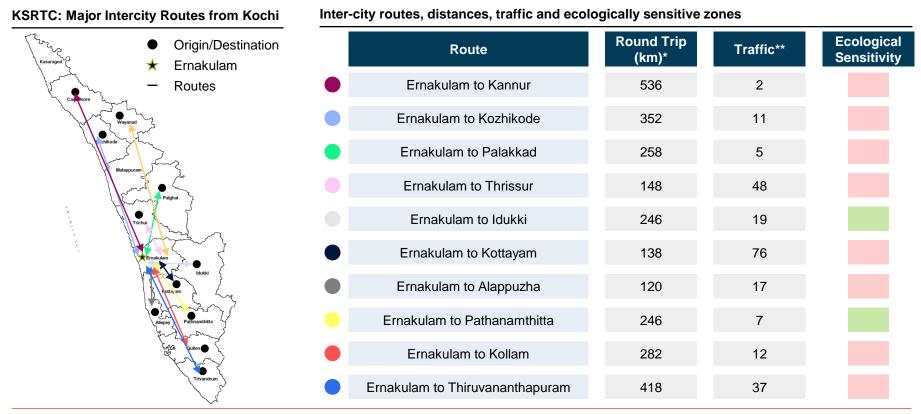
In Kerala, KSRTC is the largest state-run bus operator providing anchor fleet for H₂ offtake


- Electrification will make strongest case for small cars and light commercial vehicles since they run on a short range
- Hydrogen will be preferred for heavy duty vehicles such as buses, trucks, trains (hybrid) as they have longer range and need shorter refuelling time to avoid loss of business

Current operator	Selected operator		
	Private Buses	Public Buses (KSRTC)	Trucks
Ownership status	Privately owned fleet	State owned fleet	Separation of fleet ownership and operator
Type of operations	Multiple small players operating in fragments	Concentrated operations in South Kerala	Multiple small players operating in fragments
Scalability of operations	Low as each player has a small fleet	High as KSRTC owns all the buses	Low as each player has a small fleet

- KSRTC will be the best suited operator for running a pilot on hydrogen offtake:
- It operates a fleet of ~5600 buses
- It has concentrated operations on routes running from Kochi to Trivandrum and dominates operations in the southern region
- There is scope for scalability as all the fleet is owned by the government

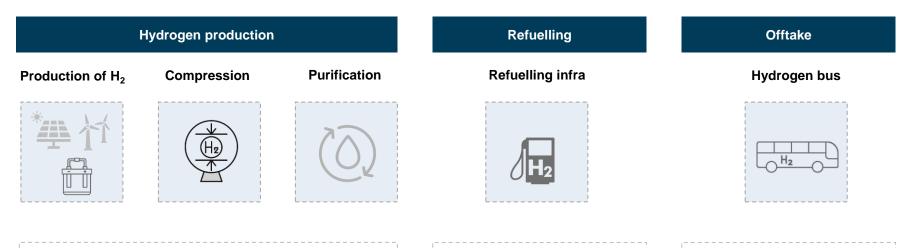
KSRTC operates a fleet of 5600 buses in Kerala


With total potential hydrogen demand of 43 kTPA divided between long- and short-range buses where demand can be anchored for 13 kTPA of long-range buses

133 Note: Potential demand for GH₂ has been estimated for 1000 buses on 1 refuelling of a 40 kg tank for 330 days; *Fleet size is based on estimates applying a CAGR of 1% Source: <u>KSRTC financial data</u>; <u>Review of public enterprises in Kerala</u>; Primary interviews; MEC+ analysis

From Ernakulam, 11 long inter-city routes span serving ~300 buses

Of the 1000 long range buses, ~300 *buses run through Ernakulam over inter-city routes with a potential of 3.96 kTPA*

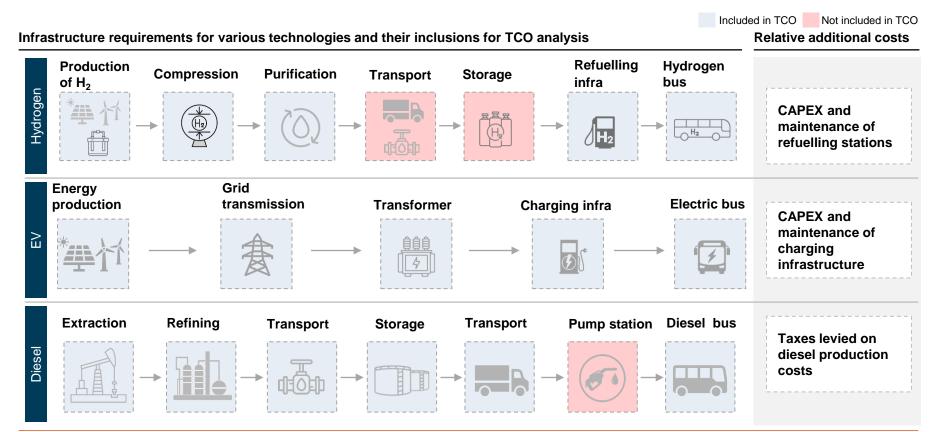


134 Note: *Round trip distances < 250 kms can be run on EV, Round trip distances of >250-500 kms are suitable for hydrogen; **Refers to number of buses/day basis website Source: <u>Website</u>; Primary interviews; MEC+ analysis

In order to convert these routes, 3 essential elements are needed

Hydrogen production, set up of refuelling infrastructure and deployment of hydrogen buses are key to convert the potential demand

Infrastructure requirements for converting bus routes to hydrogen bus routes

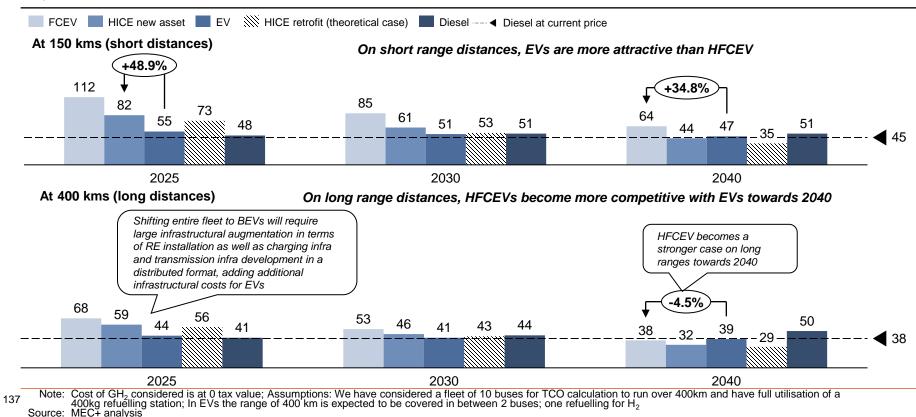

Production of green hydrogen via electrolysis. A key input required for mobility use case of hydrogen is compression of H2 molecules as well as high purity at 99.999% (for FCEV specifically).

Setup of refuelling infra along the routes to ensure continuous supply of hydrogen to the buses Procurement and deployment for HFCEV and HICE buses for offtake over the long-range routes

135

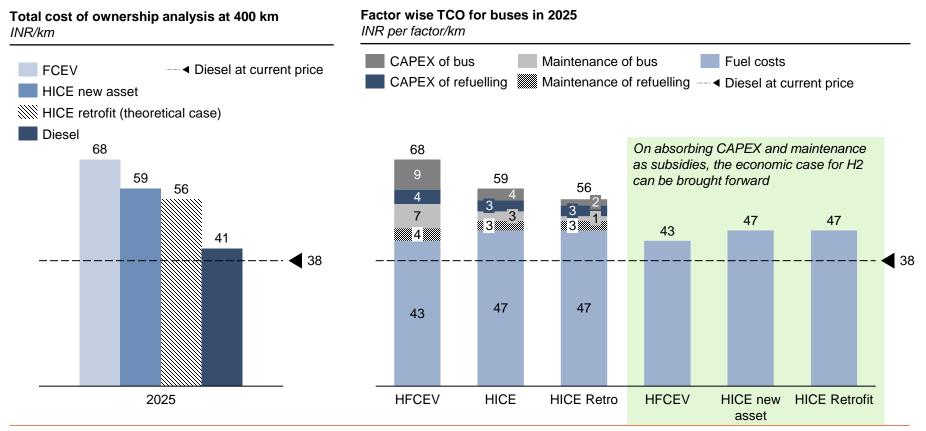
To assess demand conversion economically, we've calculated TCO

We have compared incumbent fuels as well as competitive technologies for TCO calculation over 5-7 value chain elements



Economic | HICE emerges as most competitive fuel technologically

On comparing EV with H₂, HFCEV becoming stronger for longer ranges towards 2040


Total cost of ownership analysis at different distances

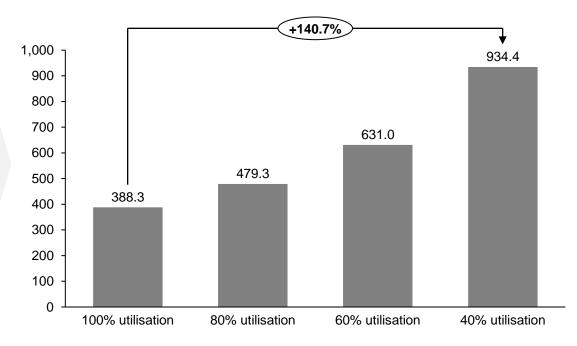
INR/km

Economic | In next decade, diesel & hydrogen can be comparable

if investment support is provided for the cost and maintenance of the bus as well as refuelling

138 Note: Cost of green hydrogen considered is at 0 tax value; diesel prices are expected to rise from INR 100 to INR 147; one refuelling is considered for H₂ buses Source: MEC+ analysis

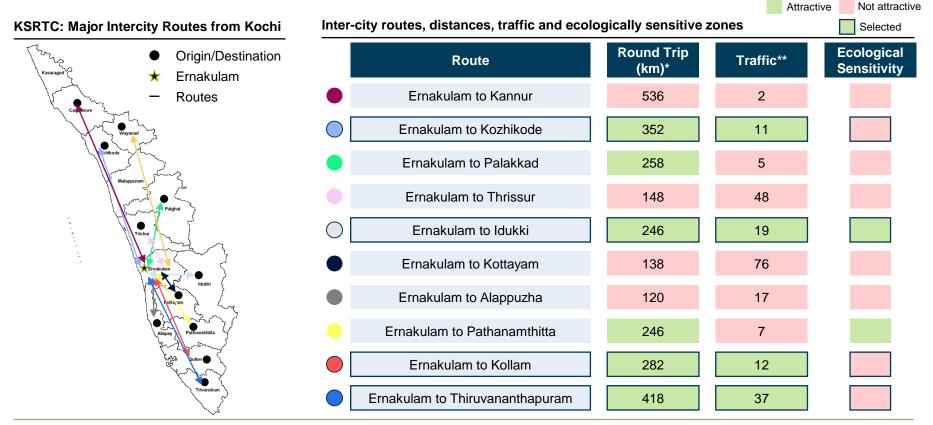
The results are based on 100% utilisation of 400 kg refuelling infra


The landed costs is highly sensitive to refuelling infra utilisation, lower utilisation can have ~140% higher costs | refuelling infra has been sized to ensure 100% utilisation in all configurations

Refuelling infrastructure

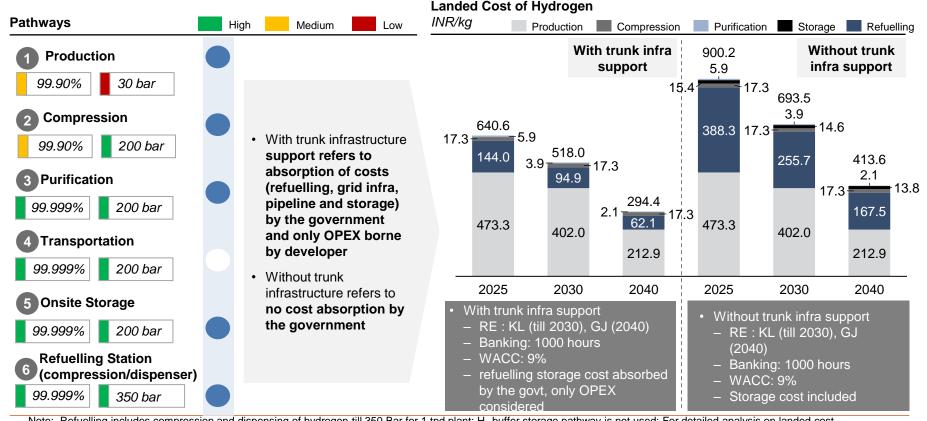
400 kg refuelling costs at different utilisation rates *INR/kg*

 As the number of refuelling stations increases, initial setup costs get distributed across a larger network. This decreases the per-unit cost of establishing and operating each station, making the overall infrastructure more costefficient


- A higher utilisation of the refuelling would mean lower per unit costs whereas lower utilisation would mean high per unit costs for a fixed rate of return
- We have considered 4 scenarios for arriving at refuelling costs: 40% utilisation, 60% utilisation, 80% utilisation and 100% utilisation

139 Note: Cost of refuelling at a 400 kg hydrogen station is influenced by its utilisation rate. A fixed margin on the investment directly affects hydrogen (H₂) cost. The compressor energy is calculated 0.26 kWh/kg H₂, decreases with limited H₂ utilisation, the savings of which have also been considered Source: MEC+ analysis

Economically assessed, 4 routes appear most attractive for pilots


11 intercity routes run from Ernakulam, of which based on distance, traffic and ecological sensitivity 4 routes seem attractive

140 Note: *Round trip distances < 250 kms can be run on EV, Round trip distances of >250-500 kms are suitable for hydrogen; **Refers to number of buses/day basis website Source: <u>Website</u>; Primary interviews; MEC+ analysis

H₂ costs could range anywhere from 294 to 414 INR/kg in 2040

with refuelling station having highest cost contribution after production

141 Note: Refuelling includes compression and dispensing of hydrogen till 350 Bar for 1 tpd plant; H₂ buffer storage pathway is not used; For detailed analysis on landed cost refer to section supply side economics Source: <u>IGEF-MEC Model</u>; MEC+ analysis

Regulation maturity is low

Currently no specific regulations with specific timelines for offtake of hydrogen exist for transport sector in Kerala or centrally inhibiting the uptake of green hydrogen

Mandate/incentive

Mandate/incentive

No mandate/incentive

Central, state and company level policies for decarbonisation

Announced Goals and Policies

present for H₂ present at a broader level present **KSRTC** Central State Decarbonisation Net zero goals at a corporate level Net zero by 2070 for all industries Net zero by 2050 for all industries by 2040 goal Reduction by adoption of EV in the Emission Reduction targets using EV (30% Emission reductions by deploying 1 entire fleet of KSRTC by 2025, reduction target electric LDV sales by 2030 million EVs on road by 2022 however currently 117 buses operate Carbon pricing No carbon mandates Subsidy on H₂ Competing tech such as EVs have received subsidies/waivers etc costs Capex/investment CAPEX/Investments in EVs have been made commitments Hydrogen No hydrogen mandates are present mandate/plans **Overall regulatory** score

ACC: Advanced Chemistry Cell 142 Note:

> Decarbonising transport 2023; EV policy; News article; ICCT: BS-VI norms; PIB; E-Amrit; Mercom; Tender KSRTC; News article; MEC+ analysis Source:

Technology readiness is medium

Technology demonstration for various hydrogen-based buses exists in controlled environment

Technology requirements for using green hydrogen in KSRTC

Technology Shift and TRL levels

Supporting Activities

	Production	Storage/Conversion	angle Refuelling station $ angle$	Offtake
es	8	6	6-7	6-9
Primary Activities	 To cater to the potential demand, 130 MW of electrolyser would be required Demonstration projects at this scale are being conducted globally 	 Storage: Storage in refuelling stations for buses exists at controlled scale in isolated environments through demonstrations Conversion: Not required 	 Refuelling station: To cater to annual demand, refuelling station of 400 kg/day to setup Demonstration projects for being conducted at very initial level 	Offtake: FCEV buses are at a TRL of 8-9 with successful demos undertaken whereas for HICE and retrofit HICE exist at concept level for buses

Linfavourable

Modium

Favourable

Permits & Regulations: Permits required for setting up refuelling at port or over the routes, permits for entering of buses in port, permits required for procurement of HFCEV and HICE buses

Standards, Safety & Certifications: For hydrogen fuelled road transport, international standards such as CEN/TC268 give quality specifications for fuel cells. Further, Indian and international standards such as IS/ISO 13985 : 2006, IS17268 : 2020, EN 17127 are present for refuelling stations; specific and stringent safety and standards required specifically in state and centrally

Human Resources: Skilling of manpower across the value chain, including manufacturing of buses, Green Hydrogen project installation, and operations & maintenance, skill development for H₂ bus operations, refuelling station operations

143 Note: TRLs are based on pilot projects being conducted in India by companies such as Reliance, IOCL etc Source: <u>PIB; Standards and certifications, IIT Madras; Cluster guidelines, Unido;</u> MEC+ analysis

Technology demonstrations in progress

Various technology demonstrations for HFCEV and HICE buses in various stages are currently in progress in India

Technology requirements for using green hydrogen in KSRTC

Technology Shift and TRL levels

No demonstration has been seen in buses presently Cummins and Tata Motors have signed a Memorandum of Understanding (MoU) to collaborate on the design and development of low and zero-emission propulsion technology solutions for commercial vehicles in India, including hydrogen-powered internal combustion engine Currently companies such as IOCL; Olectra & Bharat Benz in collaboration with Reliance; and Tata Motors have **launched pilot hydrogen FCEV buses** in India

Several companies have manufactured and launched EVs on a **commercial scale** in India for various applications including public transportation, commercial fleet operations etc

Off-taker willingness is low to medium

TRL and possible support from govt can drive adoption

willingness and openness for green hydrogen uptake is relatively lower for the transport sector

Decarbonisation goals Hydrogen use case Green H₂ Adoption plans KSRTC has deployed EV buses for Decarbonisation decarbonisation of its fleet; no goals specific Green H₂ tech confidence First offtake timelines goals to H₂ have been announced but Kerala has Decarbonisation a net zero target for 2050 qoals H₂ does not have a direct use and will Hydrogen use require huge expenditure in terms of new case Hydrogen use assets, infrastructure set up etc. H₂ is First offtake case suitable for specific markets only timelines No adoption plans as mandates, regulations Green H₂ and targets are not present. Adoption will adoption plans depend on support provided by the government refuelling infrastructure is a potential Green H₂ tech challenge; high costs of new assets in the confidence GH₂ tech **GH₂ Adoption** fleet confidence plans Lack of mandates, high cost of green hydrogen, No timelines have been outlined by KSRTC; First offtake procurement of new assets and set up of infrastructure Willingness to test pilot given government timelines 1.6 hinder offtake. However, Kerala's net zero target, high support in terms of infrastructure and bus

CAPEX

Road transport offtake willingness level from 0 to 4 on 5 parameters

Currently only technology readiness acts as a driver for H₂ offtake

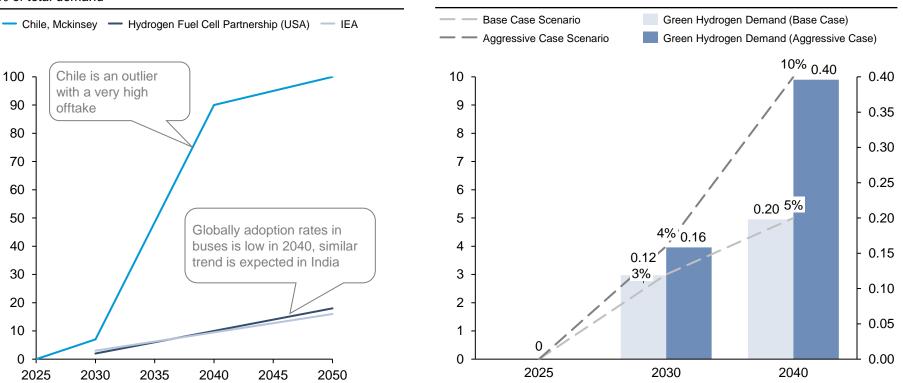
The lack of regulations, poor economics and medium off-taker willingness inhibit hydrogen uptake

Hydrogen offtake in Buses

Drivers and Inhibitors

		GH ₂ based hydrogen production provide high technology maturity, cost competitiveness in the next decade and is suitable for long ranges	Require government intervention on subsidy and infrastructure set up (bus & refuelling)
¥	Economic	 Hydrogen buses will make a strong case for long ranges (400 kms) given initial support from the government 	 New assets (buses) and infrastructure (refuelling) would be required inhibiting adoption. Government support will be needed initially
Ŕ	Regulations	No drivers present at central, state, self level for hydrogen	 No regulations for demand creation in terms of mandates, targets, penalties No regulations for creation of supply in terms of incentives and subsidy
€G €G	Technical	 There are 3 types of H₂ technology available: HICE, Retrofitted HICE, FCEV TRL of FCEV is between 8-9 showcasing that the technology is successfully demonstrated 	 Commercial feasibility is yet to be tested Cost competitive technologies such as HICE, Retrofitted HICE have a low TRL and their usage has not been demonstrated yet
\checkmark	Offtaker willingness	No drivers present for hydrogen offtake for KSRTC presently	• Offtaker willingness is low at 1.6 on parameters including decarbonisation goals, hydrogen use case, adoption plans, tech confidence and offtake timelines

Adoption of Green H₂ in Buses are Low to Medium demand in 2040

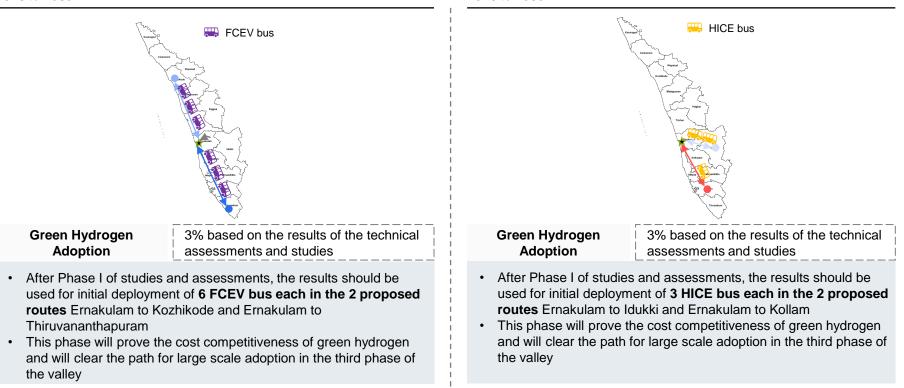

Expected adoption rates for buses in the valley

As % of total demand and demand in kTPA

Basis these, on applying global adoption rates of H_2 for buses, a low to medium demand in 2040 of 0.12 kTPA and 0.2 kTPA offtake in India under the base scenario emerges

Adoption rate of hydrogen in buses

% of total demand

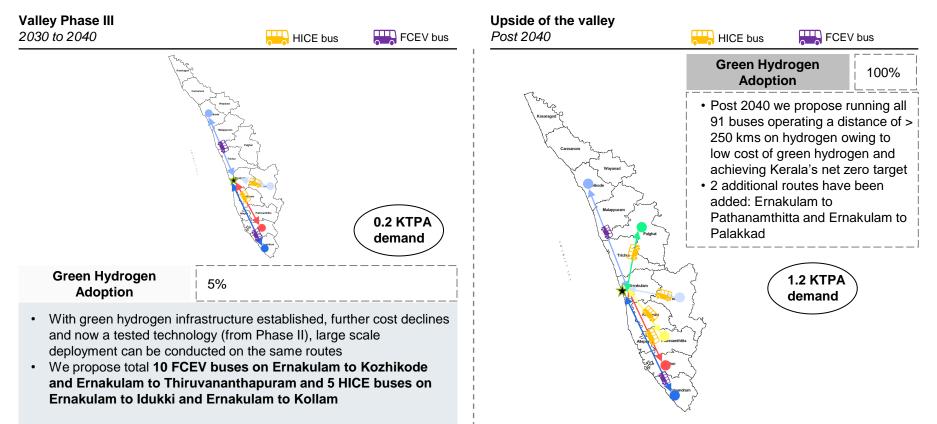

147 Note: Base and Aggressive cases are considered based on net zero targets of Kerala and valley specific parameters for 300 long range buses operating from Kochi Source: <u>HFCP; IEA ; McKinsey;</u> MEC+ analysis

As a pilot, 6 buses of FCEV, and 3 buses of HICE are proposed

to run on the selected routes in Phase II

Valley Phase II: FCEV buses

2026 to 2030



Valley Phase II: FCEV buses

2026 to 2030

The best suited technology from phase II

will be deployed on a larger scale in Phase III

Kerala can operate vessels in inland waterways and coastal routes

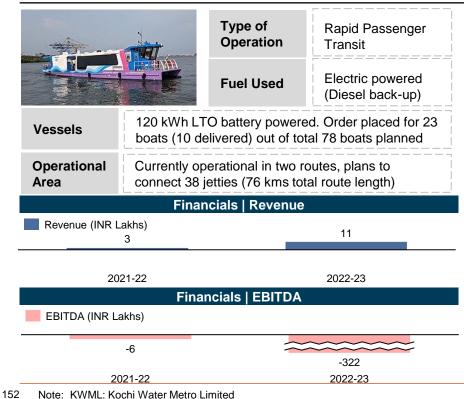
with current operations limited to specific stretches in inland waterways

Coastal & inland vessel

have moderate use case:

local ferries have low case

obal Feasibility		Waterways Operational landscape in Kerala					
navoidable		Type of Operation	Passender Linerations		Cargo Operations (Inland)		Shipping
Fertiliser Refi	nery Methanol Chemical	Operator	Kochi Water Metro	KSWTD	KSINC	Other Operators*	
Shipping	Chemical		KOCHWATER METRO	-	KSINC	COAST COAST AND A SHINY	
Long haul train	E-fuels	Operations	Kochi	Kerala	Kochi	Distributed	Shipping has lowe TRLs and is highly
Long haul truck	Coastal & inland vessels	Ownership	Kerala Govt. & KMRL	Kerala Govt.	Kerala Govt.	Private Owned	dependent on global developmer
Local ferries	Short haul aviation	Current	Passenger	Passenger	Cargo, passenger	Movement of	hence expected to come post 2040;
Light aviation	Rural trains	operations and plans	transport in Kochi; plans for multiple in KL	transport in different KL clusters	and tourism in Kochi; Plans for KMML barges	cargo mainly in the Kochi area	further, bunkering demand is kept under innovation
H ₂ FC cars	2-3 wheelers		No current		No current	'=========== 	cluster as a part o
competitive Shipping is the most competitive sector		Current volume	H ₂ demand; visible	No current and visible	H2 demand; visible	Highly	upcoming demand
		and future volume	demand of ~1.9 kTPA	demand	demand of ~0.1 kTPA	distributed	


 Current cargo operations are focussed on Kochi and passenger transport is confined to small clusters within districts, IWAI the development and regulatory body for the inland waterways and KMB oversees the coastal ports, coastal shipping is a potential opportunity currently unexplored

151 Note: *Other operators are representative (non-exhaustive); PPP: Public Private Partnership; KMML: Kerala Metals and Minerals Ltd; IWAI: Inland Waterways Authority of India ; KMB: Kerala Maritime Board Source: Liebreich Associates; MEC+ analysis

Kochi Water Metro can drive the integration of waterways

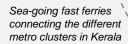
A pioneer in sustainable technology and operations, the Kochi Water Metro can play a potential role in the integration of waterways by deploying sea-going vessels connecting metros in different cities

Kochi Water Metro | Operational Profile

Current Operations of Kochi Water Metro

- Envisaged as a modern water transport system connecting the islands to the Greater Kochi region
- Commenced operations in April 2023
- On activating the full envisioned capacity, it will have a fleet of 78 boats connecting the 38 jetties across 15 routes

H2 demand (kTPA)


No current demand

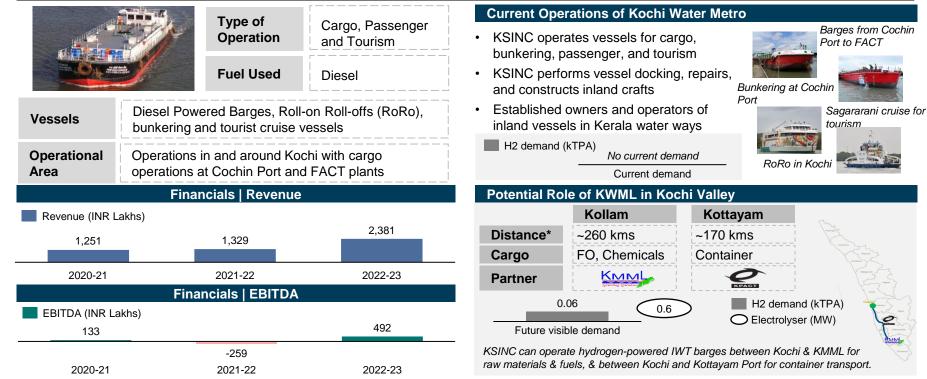
Potential Role of KWML in Kochi Valley

- The Kerala government aims to expand the Water Metro Model to 5-6 cities
- KWML intends to link these cities via sea routes, connecting inland waterways to sea
- Kochi Water Metro aims to introduce a H₂ fuel-cell sea vessel service capable of up to 25-30 knots

H2 demand (kTPA) Electrolyser (MW)

1.9

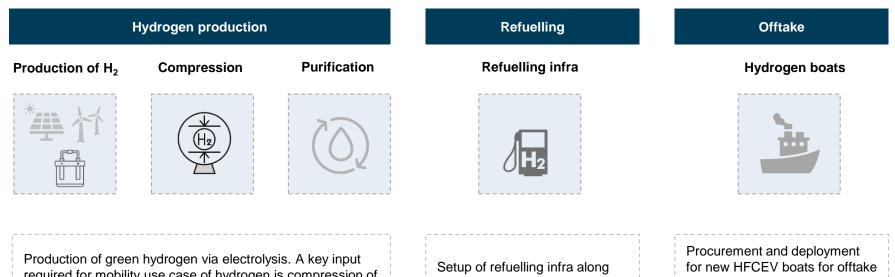
Future visible demand


Source: KWML AR-23; Interviews; MEC+ analysis

KSINC can drive cargo movement across cities for KMML & KPACT

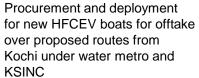
KSINC is an established operator of barges and other inland-water crafts in Kochi; potential to deploy and operate hydrogen powered barges for cargo movement across cities for KMML & KPACT

KSINC | Operational Profile

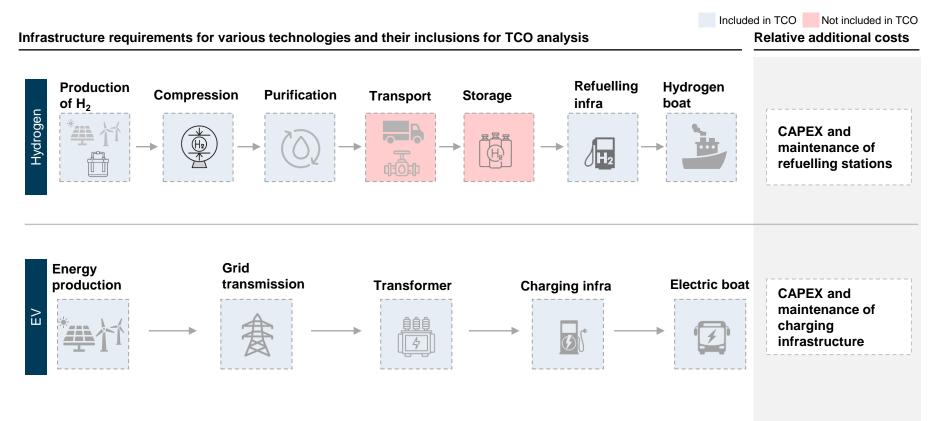

153 Note: *Roundtrip distance; KSINC: Kerala Shipping and Inland Navigation Corporation Ltd; KMML: Kerala Minerals and Metals Ltd; IWT: Inland Water Transport; KPACT:Kottayam Port and Container Terminal; FO: Furnace Oil

Source: KSINC-AR; KMML; Kottayam Port; Interviews; MEC+ analysis

To create this H₂ marine economy, 3 essential elements are needed

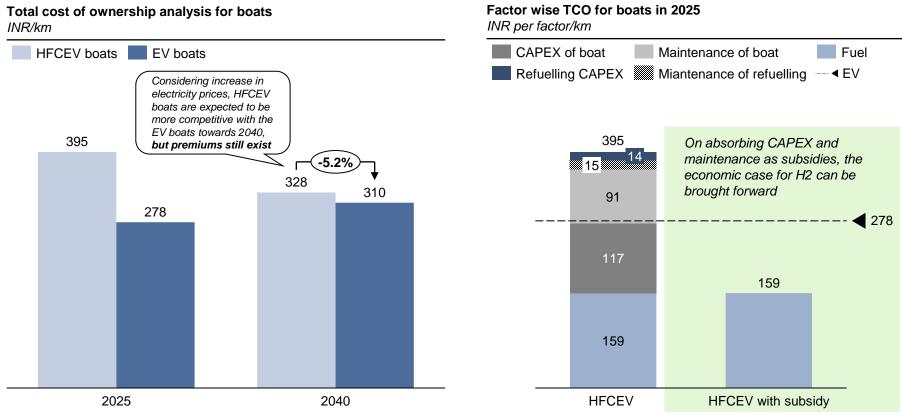

Hydrogen production, set up of refuelling infrastructure and deployment of hydrogen boats are key to establish the potential demand

Infrastructure requirements for creating a new hydrogen marine economy in Kochi/Kerala


required for mobility use case of hydrogen is compression of H2 molecules as well as high purity at 99.999% (for FCEV specifically).

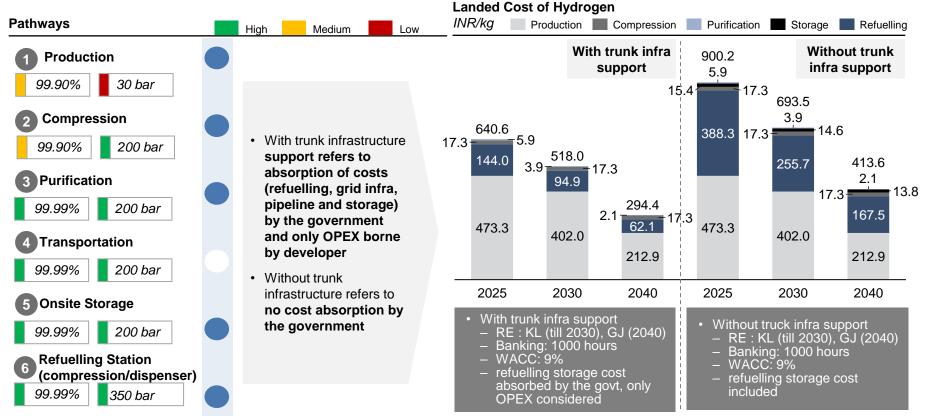
Setup of refuelling infra along the routes to ensure continuous supply of hydrogen to the boats

To assess demand conversion economically, we've calculated TCO


We have compared no emission competitive technologies for TCO calculation over 5-7 value chain elements

155

Economic case is low-medium


Government support over vessels and refuelling infrastructure in the initial years for the pilot can strengthen the case for waterways in Kochi

Note: OPEX at 3% for boats; OPEX for refuelling declining from 7% to 2%; 4 boats considered over a distance of 200 km; 1 refuelling station and 4 chargers; 80 kg tank of H₂ for 1 boat; H₂ boat cost INR 20 Cr and EV boat INR 10 Cr Source: MEC+ analysis

For water transport H₂ costs ranges from 294.4 to 413.6 INR/Kg

For water transport, hydrogen costs could range anywhere from 294.4 to 413.6 INR/Kg in 2040 with refuelling station having highest cost contribution after production

157 Note: For detailed analysis on landed cost refer to section supply side economics Source: MEC+ analysis

Policy maturity is medium-high

Central and state level plans for investments in decarbonisation of waterways as well as pilots for green vessels drive regulatory support for Kochi Waterways

Mandate/incentive Mandate/incentive

No mandate/incentive

Central, state and company level policies for decarbonisation

Announced Cools and Delision

Announced Goals and I	Policies	present for H ₂ present at a broader level present		
	Central	State	KWML/KSINC	
Decarbonisation goal	Multiple initiatives specified in (2030) and Amrit kaal Vision (2047)	Plans to transform West Coast canal into green economic corridor	KWML targets to be carbon neutral. Timelines to be fixed soon	
Emission reduction target	Targets to reduce GHG emissions – 30% in 2030 and 70% in 2047	No specific targets for inland waterways or coastal shipping	No specific targets	
Carbon pricing	Not present at inland/coastal level	No Mandates		
Subsidy on H ₂ costs	Ships using cleaner fuels may be incentivized through queue priority or rebate in berth dues	Not specified		
Capex/investment commitments	Govt. to support 30% of project cost for green vessels. To launch 20 pilot vessels (including H $_2$ ferry, tugs.	INR 2400 crores allocated for west coast canal transformation	KSINC; initial plans to convert to LNG barges; studies done by Kottayam Port for H_2 barges	
Hydrogen mandate/plans	No mandates announced	Not Specified	Not applicable	
Overall regulatory score				

Note: 2008 GHG emissions as reference level; KWML: Kochi Water Metro Rail Ltd 158 Source: PIB; Maritime Amrit kaal Vision 2047; ET-Infra; ET-EW; TME; MEC+ analysis

Technology readiness is medium

Technology demonstration for various hydrogen-based vessels exists in controlled environment

Technology requirements for using green hydrogen in Vessels

Technology Shift and TRL levels

	Production	Storage/Conversion		Offtake
ties	8	6	6-7	5-6
Primary Activiti	 To cater to the demand, 20 MW of electrolyser would be required Demonstration projects at this scale are being conducted globally 	 Storage: Storage in refuelling stations for boats exists at controlled scale in isolated environments through demonstrations Conversion: Not required 	 Refuelling station: To cater to annual demand, refuelling station of 400 kg/day to setup Demonstration projects for being conducted at very initial level 	 Process integration: FCEV boats are at a TRL of 6 with demos in relevant environment while HICE boats have a lower TRL of 5 Vessel manufacturing: CSL has proven tech & expertise in manufacturing GH, vessels

Unfovourable

Modium

Fovourable

Permits & Regulations: Ministry of New & Renewable Energy has decided to define Green Hydrogen as having a well-to-gate emission (i.e., including water treatment, electrolysis, gas purification, drying and compression of hydrogen) of not more than 2 kg CO2 equivalent / kg H₂; regulations and permits for vessel manufacturing; permits required for setting up a refuelling station

Standards, Safety & Certifications: For hydrogen fuelled transport, international standards such as CEN/TC268 give quality specifications for fuel cells. Further, Indian and international standards such as IS/ISO 13985 : 2006, IS17268 : 2020, EN 17127 are present for refuelling stations; stringent standards required as public is involved; vessel manufacturing

Human Resources: Skilling of manpower across the value chain, including manufacturing of equipment, Green Hydrogen project installation, and operations & maintenance

Supporting Activities

Offtaker willingness is low to medium

Willingness to test the pilots can be strengthened by maturing technology developments and addressing refuelling infrastructural challenges

Waterways readiness level from 0 to 4 on 5 parameters

Decarbonisation goals Hydrogen use case Green H ₂ Adoption plans Green H ₂ tech confidence First offtake timelines	Decarbonisation goals	Off takers have views on decarbonisation but no timelines, two-way focus on carbon reduction; shift from road to waterways and use of alternate fuels in operations
Decarbonisation goals 4 3 First offtake 2 Hydrogen use case	Hydrogen use case	Currently there is no direct use case of hydrogen present
timelines	Green H ₂ adoption plans	Interest shown in water-based cargo movement (by beneficiaries) and operators are willing for pilots if adequate support is given by the government
GH ₂ tech GH ₂ Adoption confidence plans	Green H₂ tech confidence	Technology is in prototype/beginning demonstration stage, hydrogen related projects at Cochin Shipyard is leading to stronger tech confidence
1.8 Lack of mandates, clearly defined decarbonisation goals as well as challenges in refuelling infrastructure and new tech for vessels lowers the willingness, however, the off takers are keen on conducting pilots for the same making boats a peculiar demand case	First offtake timelines	No fixed timelines. Adoption to depend on refuelling infrastructure availability, operational and technical feasibility (based on studies) and capex incentives

Source: Stakeholder Interviews; MEC+ analysis

Cochin Shipyard and Government can drive offtake for waterways

Technology expertise from Cochin Shipyard and support from the government on infrastructure can drive the offtake for waterways in Kochi

Hydrogen offtake in Vessels

Drivers and Inhibitors

			Technology maturity from Cochin Shipyard, decarbonisation goals, central support for pilots can drive waterways sector in Kochi		Require government intervention on subsidy and infrastructure set up
\gtrless	Economic		rnment support on CAPEX of vessels and ling infrastructure can drive the economic	the ve • Low	costs capital as well as operational costs of essels scale prospective demand inhibiting omies of scale
Ŕ	Regulations	level • Cent	tral policies for deployment of pilot green ogen vessels exist	decar	of clearly defined timelines for bonisation goals of established demand
	Technical	and impr	nin Shipyard's current H ₂ vessel projects positioning as a leading shipyard oves tech confidence in the valley for fuel manufacturing	mai vess	<pre>< of expertise in operations and ntenance of hydrogen fuel-cell based sels uelling infrastructure might be a challenge</pre>
\checkmark	Offtaker willingness	supp • Past	ingness to test pilots with government port t studies and proposals conducted for H ₂ ed vessels		rtainty on future plans for development rastructure

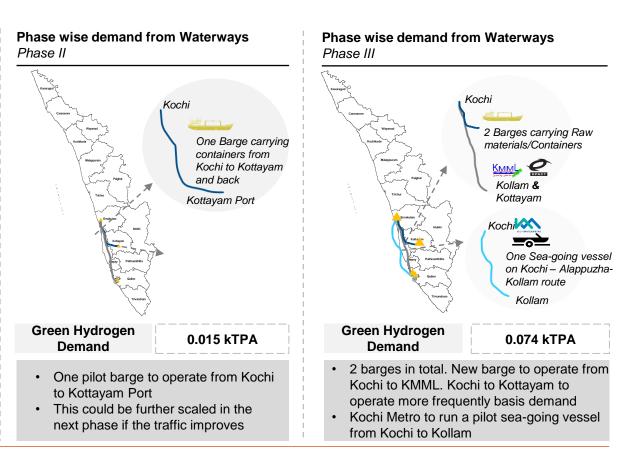
Total anticipated demand from waterways is ~2 kTPA of green H₂

which could have a potential upside basis the development of infrastructure and traffic

Total Demand generated from Waterways

Demand in kTPA

Barge Operations Pot	tential Demand	Kochi Water Metro – Sea going vessels potential demand		
Kottayam and Kochi t	ogen powered barges from Kochi to to Kollam . Based on the success of the pilots wCC, barges can be increased	The proposal is to run sea-going vessels connecting the different water metros of the states. And, In lines with the Kerala govt. Vision to introduce 100 boats running on clean fuels . The total boats potential for this operation would be 50		
Kottayam Port				
Number of Boats	1 barge	Number of Boats	50 Boats	
Roundtrip Distance	170 Kms (Kochi to Kottayam)	Roundtrip Distance	260 Kms (Kochi Metro to Kollam Metro)	
Hydrogen Consumption	68 kgs (80kg tank with 200kms range)*	Hydrogen Consumption	104 kgs (80kg tank with 200kms range)	
Operational Days	330 Days	Operational Days	365 Days	
Hydrogen Demand	0.02 kTPA	Hydrogen Demand	1.9 kTPA of green hydrogen	
Kochi to KMML			from waterways is 2 LTDA with majority of the	
Number of Boats	2 barges (HCL and Furnace Oil)	 Total demand arising from waterways is 2 kTPA, with majority of the demand depending on the operations of Kochi Water Metro sea- going vessels 		
Roundtrip Distance	260 Kms (Kochi to KMML)			
Hydrogen Consumption	104 kgs (80kg tank with 200kms range)	 The actual potential of the waterways in Kerala would depend on multiple factors like the completion of works in the WCC, 		
Operational Days	183 Days	conversion of traffic from roadways, development of H ₂ vessels etc		
Hydrogen Demand 0.04 kTPA				


Note: Demand is calculated through high-level estimations as it is bottom up, further studies required to ascertain total demand; WCC: West Coast Canal *: Range estimations have been made basis input of 40 kg tank of boats running over 100 km, hydrogen consumption per roundtrip considered ;Source: Primary interviews; Kerala Govt.; MEC+ analysis

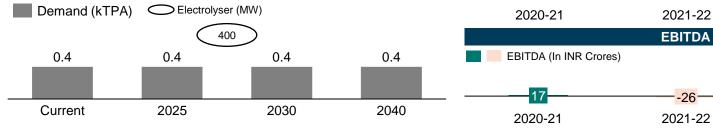
Phase wise development of waterways in Kochi

Phase wise demand from Waterways Phase I

- Hydrogen based vessels with larger tank capacity and higher ranges in 1 refuelling need to be developed
- Phase I to focus on the development of hydrogen powered sea-going vessels and hydrogen powered barges
- Studies need to be conducted to ascertain the technical feasibility of operating sea-going vessels and barges
- The inland waterway stretch from Kochi to Kollam is also expected to be ready in this phase

163 Note: Demand is calculated through high-level estimations, further studies required to ascertain total demand Source: MEC+ analysis

CHEMICALS SECTOR


In Kochi, chemical sector is concentrated under HOCL

with a current demand of 0.4 kTPA of hydrogen

HOCL – Kochi | General Overview

Production Overview		
Location	Ambalamugal, Kochi	
Production Capacity	40 KTPA (Phenol); 25 KTPA (Acetone); 5.2 KTPA (Hydrogen peroxide)	
Major Products	Phenol, Acetone and Hydrogen Peroxide where hydrogen is used directly	
Customers	Major customers contributing >50% of revenue in FY 2022-23 include: Pooja petrochemicals, Ramesh Kumar Sonkamal Enterprises P Ltd, Ponpure Chemical India Pvt Ltd	

Grey to Green Hydrogen Demand* (kTPA) | Current and Projected

 Overview
 Business Model for Hydrogen Offtake

 data
 Hydrogen transported

HOCL | Business Model & Financials Revenue and EBITDA

> from BPCL to HOCL via pipeline

> > In house production of hydrogen

peroxide HOCL

Revenue

465

 H_{2}

BPCL, Kochi

Revenue (in INR Crores)

431

End User

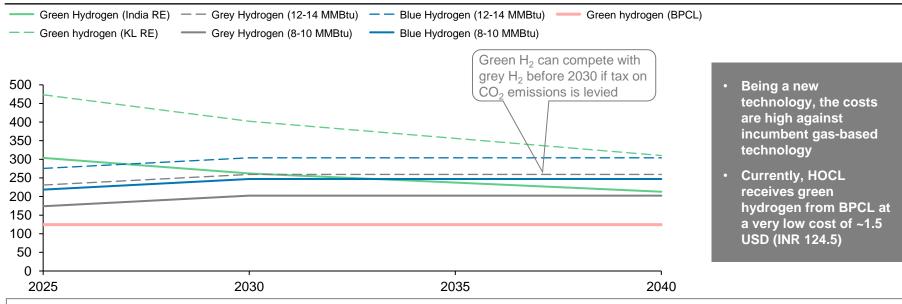
643

2022-23

-50

2022-23

165 Note: No expansion plans have been announced yet, hence, demand is considered to stay consistent over the years; Hydrogen is used only for production of hydrogen peroxide

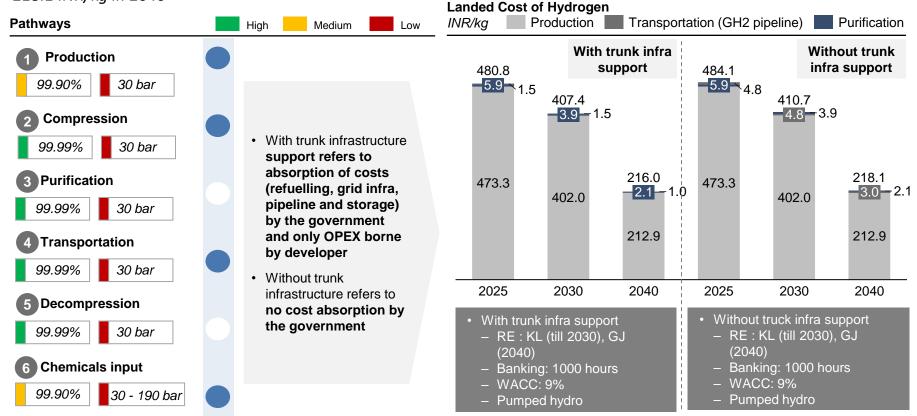

;Source: HOCL; Annual report 2022-23; Annual report 2021-22; MEC+ analysis

Economic case is low

Business case for chemical plants has low attractiveness as HOCL procures its current hydrogen from BPCL at a price of ~ INR 125/kg

Green hydrogen | Cost parity with grey hydrogen

Landed cost of hydrogen per kg


Scenarios

Low Natural Gas Price Scenario: Cost of natural gas is at 8 USD/MMBtu in 2025 and 10 USD/MMBtu in 2030 and 2040 | High Natural Gas Price Scenario: Cost of natural gas is at 12 USD/MMBtu in 2025 and 14 USD/MMBtu in 2030 and 2040 | Green Hydrogen (India RE): Hybrid RE from Gujarat and grid banking of 1000 hours| Green Hydrogen (KL RE): Solar with Pumped hydro storage from Kerala and grid banking of 1000 hours

Source: IGEF-MEC+ Model; MEC+ Analysis

Landed cost of green H₂ for HOCL range: 216 to 218.1 INR/kg

In-situ production of H_2 and onsite storage of hydrogen are major drivers of landed cost with costs ranging from 216 to 218.1 INR/kg in 2040

167 Note: For detailed analysis on landed cost refer to section supply side economics Source: IGEF-MEC+ Model; MEC+ analysis

Policy maturity is very low

No mandates or emission targets exist for chemical plants in Kerala or centrally, inhibiting uptake of green hydrogen

Central, state and company level policies for decarbonisation Mandate/incentive Mandate/incentive No mandate/incentive Announced Goals and Policies present for H₂ present at a broader level present HOCL Central State Decarbonisation Net zero by 2070 for all industries Net zero by 2050 for all industries No goal announced yet qoal Emission Targets are yet to be announced reduction target Currently a part of obligated sector under PAT scheme for energy efficiency and proposed to be part of future carbon trading **Carbon pricing** scheme. Penalties to be set under carbon emission trading scheme Subsidy on H₂ PLIs available for GH₂ production Not defined No specific subsidies are available costs Capex/investment No investment outlay has been announced yet commitments Hydrogen No investment outlay has been announced yet mandate/plans No mandates are present **Overall regulatory** score

168 Note: PAT: Perform Achieve and Trade Source: <u>PIB; News article;</u> MEC+ analysis

Technology readiness is moderate to high

Chemical sector in Kochi requires minimal technology intervention as direct substitution of green hydrogen is possible

Technology requirements for using green hydrogen in HOCL

Technology Shift and TRL levels

chnol	ogy Shift and TRL levels			Unfavourable Medium Favourable
	Production	Storage/Conversion	\rangle Transportation \rangle	Offtake
es	8	NA	NA	7
ary Activiti	 To cater to the demand, 4 MW of electrolyser would be required 	 No storage or conversion required as hydrogen is used in direct form 	Transportation: Pipeline for transportation already exists from BPCL to HOCL. Tests for pipeline	 The technology has received approval for projects in Odisha by ReNew in 2023 and is soon to be
	 Demonstration projects are being conducted at this scale globally 		from port to BPCL to be conducted	demonstrated in controlled relevant environment

Permits & Regulations: Ministry of New & Renewable Energy has decided to define Green Hydrogen as having a well-to-gate emission (i.e., including water treatment, electrolysis, gas purification, drying and compression of hydrogen) of not more than 2 kg CO2 equivalent / kg H₂

Standards, Safety & Certifications: Safety studies for hazard identification (HAZID, HAZOP etc), Risk evaluation (QRA, FERA etc) and Risk controlling/ management (HAC, safety audits etc); Specific standards such as CGA H-5, are applicable for hydrogen handling, storage and transport; Design and construction codes have also been established for hydrogen in its various forms

Human Resources: Skilling of manpower across the value chain, including manufacturing of equipment, Green Hydrogen project installation, and operations & maintenance

Supporting Activities

Offtaker willingness is low

High price sensitivity due to low economic case impacts green hydrogen offtake

Hydrogen use case Green H₂ Adoption plans Decarbonisation goals HOCL does not have defined timelines for Decarbonisation decarbonisation, but Kerala has a net zero Green H₂ tech confidence First offtake timelines qoals target for 2050 that will require Decarbonisation decarbonisation of all the sectors goals. 3 Hydrogen use Hydrogen used in its direct form for case production of hydrogen peroxide 2 Hydrogen First offtake use case timelines No adoption plans as mandates, regulations **Green H**₂ and targets are not present. Adoption will adoption plans depend on support provided by the government or mandates created No technology shift or infrastructure Green H₂ tech challenges are seen as grey hydrogen will confidence be substituted with green hydrogen, however, cost of Green H_2 is a challenge GH₂ tech **GH₂ Adoption** confidence plans First offtake No timelines have been outlined by HOCL. timelines Direct substitution makes the case high, however, high Cost declines and government price sensitivity and hinders offtake. Government support 1.4 support/mandates can drive adoption

Chemical offtake readiness level from 0 to 4 on 5 parameters

would be crucial to drive adoption

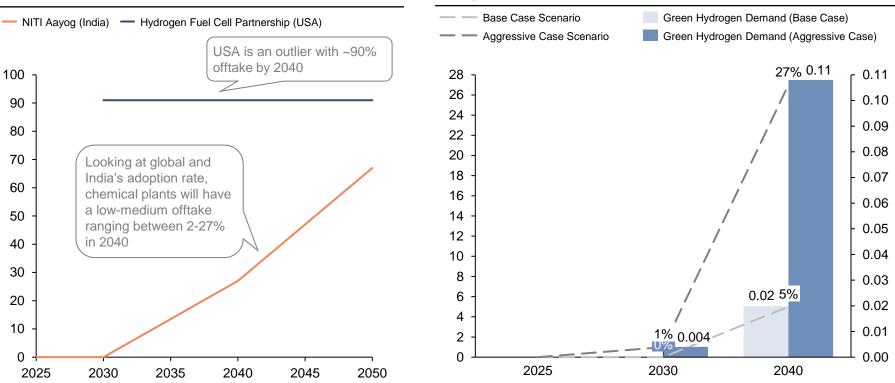
Green H₂ technology and economics to become favorable by 2030

for adoption as government interventions on these can support in unlocking the demand

Hydrogen offtake in Chemicals

Drivers and Inhibitors

		GH ₂ based hydrogen production has high technology maturity, cost competitiveness in the next decade and easy process integration	Require government intervention on subsidy and infrastructure set up
\gtrless	Economic	 Green hydrogen would be cost competitive with high cost grey hydrogen towards 2030 	 Highy price sensitivity of product Challenging financials Low cost grey hydrogen supply from BPCL
Ŕ	Regulations	• No drivers present at central, state, self level	 No regulations for demand creation in terms of mandates, targets, penalties No regulations for supply of hydrogen peroxide in terms of incentives or subsidy
	Technical	 High TRL and technology maturity as grey hydrogen will be directly replaced with green hydrogen without major infrastructure upgrades 	Purity of Green Hydrogen to be checked
\checkmark	Offtaker willingness	 No drivers present for hydrogen offtake for HOCL presently, however, support/mandates from government can drive adoption since hydrogen is used in direct form 	Offtaker willingness is low at 1.4 on parameters including decarbonisation goals, hydrogen use case, adoption plans, tech confidence and offtake timelines

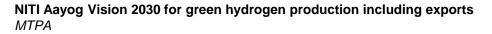

Global adoption rates indicate low to medium demand by 2040

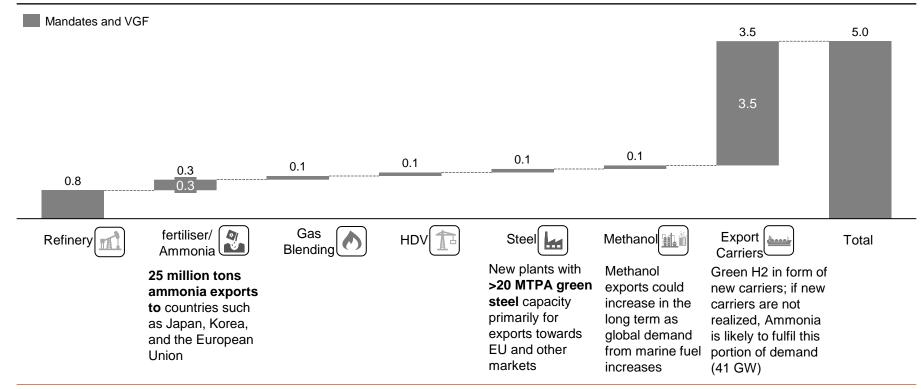
Expected adoption rates for chemical plants in the valley

On applying global adoption rates of H_2 for chemical plants, a low to medium demand suggesting 0.02 kTPA demand in 2040

Adoption rate of hydrogen in chemical plants

% of total demand

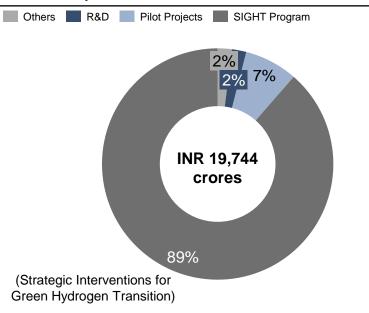

% adoption


Base and Aggressive cases are considered based on the high/low natural gas prices and price premiums for grey hydrogen, net zero targets of Kerala and valley specific parameters Note: 172

Source: NITI Aayog; HFCP; MEC+ analysis

GREEN AMMONIA EXPORTS

Gol plans to go 5 MTPA by 2030 – 70% from exports

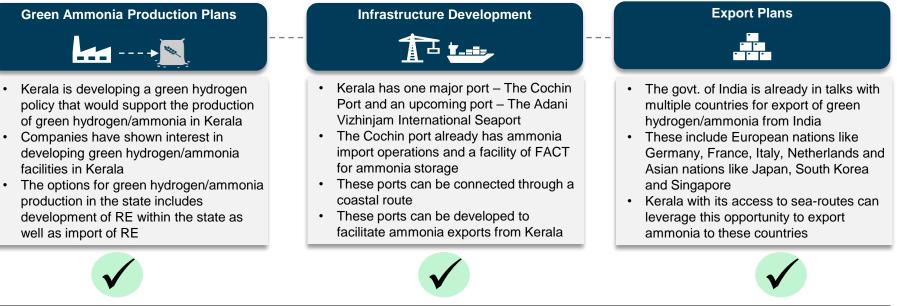


174 Note: Gol: Government of India; 1 million tons of green hydrogen corresponds to around 11-13 GW of electrolyser capacity (NITI Aayog) Source: <u>NITI Aayog and RMI Report</u>; <u>News Articles</u>; MEC+ analysis

Funds have been allocated for green hydrogen production in India

Green Hydrogen Mission| Budget Outlay

% of total outlay


Export Focus of the Mission

Green Hydrogen Mission focuses on supporting development of:

- **Port infrastructure** required for exporting green hydrogen Derivatives
- Pipelines to facilitate bulk transport of green hydrogen
- Ministry of Ports, Shipping and Waterways to play crucial role in establishing export capabilities
- The Mission will facilitate development of strategic international partnerships to enable export of Green Hydrogen and derivatives
- The National Green Hydrogen Mission States that growth in in export market will have a positive cascading effect on the domestic production as well, this applies in the case of Kerala as well
- The green Hydrogen Mission has allocated INR 19,744 crores with INR 17,490 crores dedicated towards SIGHT program for hydrogen production and electrolyser manufacturing
- Kerala has also allocated INR 200 crore in budget to develop green hydrogen hubs

Kerala fulfills the three baseline conditions that favor exports

Green Ammonia exports | Production plans, infrastructure development and exports

- As per MNRE, India would be initially exporting ~70% of the 5 million ton target set for 2030. Domestic demand would be limited in this timeframe
- Kerala can leverage this and focus on export-based production of green ammonia and green hydrogen until the demand in the valley picks up
- 176 Note: MTPA- Million tons per Annum Source: <u>News Sources;</u> MEC+ analysis

Kerala has two ports that can be transformed into export hubs

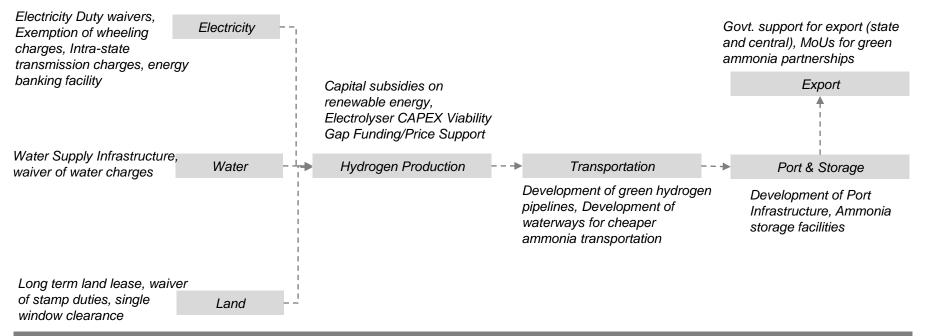
Cochin Port and Adani International Seaport can be transformed into export hubs for green ammonia

Cochin Port Authority

Kochi, Ernakulam

- Cochin Port is one of the major ports in India. The following gives Cochin Port a headway for developing green hydrogen/ammonia storage and export facilities:
 - As per the National Green Hydrogen Mission, all major ports to have green ammonia bunkers and refuelling facilities by 2035
 - Also, cochin port currently deals with the import of ammonia and hence has the infrastructure for Ammonia Handling
 - FACT has ammonia storage facility in Willingdon Island (Cochin Port Area)

Adani Vizhinjam International Seaport Vizhinjam. Thiruvananthapuram

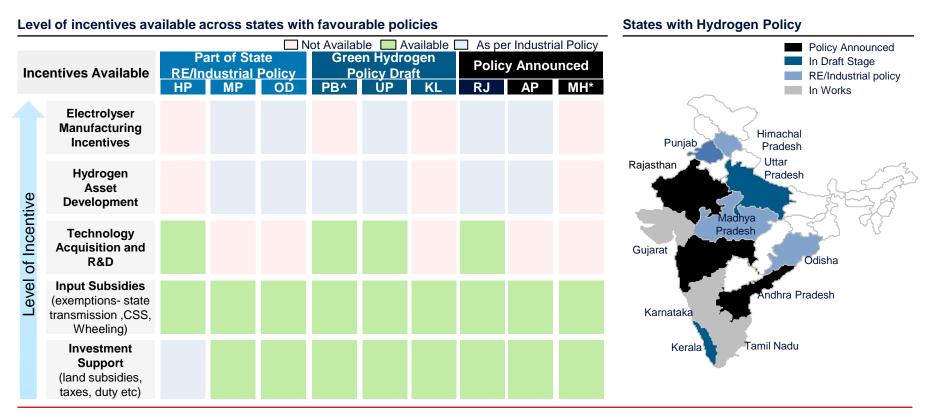

- Vizhinjam port can act as an export terminal for green hydrogen/ammonia from India:
 - Adani Ports has a vision to develop Vizhinjam port as a global bunkering hub that can supply green fuels like hydrogen and ammonia
 - Vizhinjam plays a central role in the green hydrogen hub in Trivandrum, also Kerala plans to develop West Coast Canal and Coastal highway into green corridors which can connect Vizhinjam to Cochin Port and other minor ports.
 - Vizhinjam could be an ideal location for new developers of green hydrogen entering the state for export

Kerala needs a centralised H₂ supplier to kick-off green exports

who will initiate exports and can scale up in future to meet the demands of the valley

Export Scale Green Hydrogen/Ammonia Production

Incentives required and Development Pathways



Kerala would require a major centralised hydrogen supplier with sufficient scale to export in the initial phases and further meet the demand of the entire valley

Source: Govt. of Kerala; Green Ammonia Proposals; MEC+ analysis

9 states have announced incentives through policies

Rajasthan, Andhra Pradesh, Maharashtra announced their policies, and Punjab, Uttar Pradesh and Kerala in draft stages

179 Note: *Based on news articles; HP: Himachal Pradesh; MP: Madhya Pradesh; OD: Odisha; RJ: Rajasthan; UP: Uttar Pradesh; KL: Kerala; AP: Andhra Pradesh; MH: Maharashtra; ^PB: Punjab (Asset development subsidy for biomass-based hydrogen pathway) Source: State Government Policies; News Articles; MEC+ analysis

Kerala has 3 export proposals currently

Kerala has received multiple Green Ammonia export facility proposals from private players

Export proposals in Kerala

Kerala government has multiple proposals for setting up an export facility for Green Ammonia which can be leveraged for developing Kerala as an export hub. This will help in centralising the demand and supply and lead to economies of scale in the valley

180 *: Electrolyser capacity is estimated and not actual Source: State Government; MEC+ analysis

Other states are also planning on developing GH₂/GNH₃ prodⁿ

focused on exports with multiple proposals from leading developers (I/II)

Green hydrogen project pipeline

Projects in the initial stages

Project name	Project status	Location	End use-case	Specification
ACME Group	Proposal Cleared	Karnataka	Ammonia	1.2 MTPA NH₃
ReNew Power	Proposal Cleared	Karnataka	Ammonia	1 MTPA NH₃
Avaada	Proposal Cleared	Karnataka	Ammonia	1 MTPA NH₃
JSW (Green H2)	Proposal Cleared	Karnataka	Ammonia	Not Available
Avaada	Proposal Cleared	Odisha	Ammonia	INR 23,500 crores Investment
ACME	Proposal Cleared	Odisha	Ammonia	INR 58,000 cores Investment
ReNew Power	Proposal Cleared	Odisha	Ammonia	INR 20,000 crores Investment
Ocior Energy Pvt Ltd	Proposal Cleared	Odisha	Ammonia	INR 7200 crores Investment
ACME Group	MoU	Tamil Nadu	Ammonia	1.1 MTPA NH₃
ABC Cleantech	MoU	Karnataka	Ammonia	1 MTPA NH3
Petronas	MoU	Karnataka	Ammonia	0.5 MTPA NH₃

181 Note: Non-exhaustive list of announced projects Source: News Sources; Company Websites; MEC+ analysis

Other states are also planning on developing GH₂/GNH₃ production

focused on exports with multiple proposals from leading developers (II/II)

Green hydrogen project pipeline

Projects in the initial stages

Project name	Project status	Location	End use-case	Specification
Jakson	MoU	Rajasthan	Ammonia	0.365 MTPA NH ₃
Avaada	MoU	Rajasthan	Ammonia	1 MTPA NH ₃
Aditya Birla Renewables	MoU	Rajasthan	Not Available	Not Available
Ocior Energy Pvt Ltd	MoU	Andhra Pradesh	Ammonia	1 MTPA
Ocior Energy Pvt Ltd	MoU	Gujarat	Ammonia	1 MTPA NH ₃
Umwelt Energy	MoU	Tamil Nadu	Methanol, Green Ammonia	100 KTPA CH ₃ OH
Amplus Solar	MOU	Andhra Pradesh	Green Hydrogen	7500 TPA H ₂
Hygenco (Jindal)	Planning	Haryana	Steel	75 TPA H ₂
O2 Power	Planning	Karnataka	Ammonia	Not Available
Govt. of Kerala – IH2A	Planning	Kerala	Mobility	21,900 TPA H ₂
Avada group	Planning	Madhya Pradesh	Ammonia	Not Available

182 Note: Non-exhaustive list of announced projects Source: News Sources; Company Websites; MEC+ analysis Global H₂ Landscape and Valley Focus

Kochi Hydrogen Valley - Summary

Kochi Hydrogen Valley - Design Choices

Kochi Hydrogen Valley - Background Information

Sectoral Deep Dives

Kerala GH₂ Potential

Supply Side Economics

Kochi Hydrogen Valley - Global Valley Profiles

Appendix

Kerala has 6,110 MW of grid-connected solar potential

resource quality is moderate to low as compared to other states in India

Solar Energy Potential in Kerala

Photovoltaic Power Output (kWh/kWp)

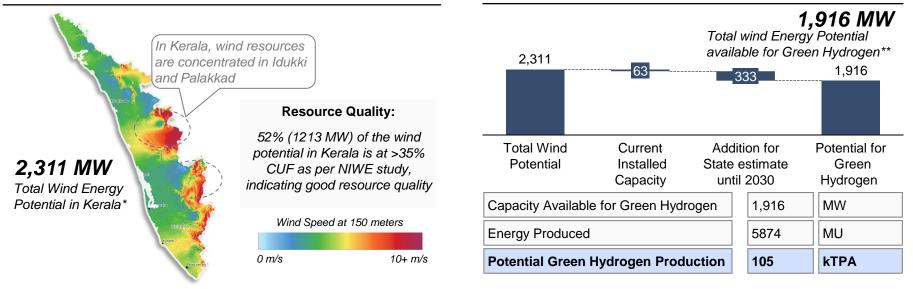
Photovoltaic Power Output 4.210 MW 2000 kWh/kWp Total Solar Energy Potential available for 6,110 Green Hvdroaen** Rajasthan 4.210 1,577 Gujarat Total Solar Current Addition for Potential for Karnataka Tamil Nadu Installed 6,110 MW Potential State estimate Green Capacity until 2030 Hydrogen Total Solar Energy Potential in Kerala* Kerala Capacity Available for Green Hydrogen 4.210 MW **Energy Produced** 6638 MU 1200 kWh/kWp **Potential Green Hydrogen Production** 119 **kTPA** Floating solar potential is estimated at 8.6 GW in Kerala (High level estimation) Kerala can produce 6638 MUs of energy with the un-utilised solar potential, translating to 119 kTPA of green hydrogen. This is equivalent to 17% of

- the total energy consumption of the state
- Given the state's target to be 100% RE dependent on its energy needs by 2040, the actual available solar potential for green hydrogen production could be even lower

Current Installed capacity refers to ground mounted installations | State Action plan estimates the cumulative solar projects to reach 3 GW (Including 1.1 GW of Rooftop PV) | Avg. CUF considered at 18%; State energy consumption at 23,983 units in 2022

184

Note: *Assuming 10% of waste land is viable for solar, actual availability of GH₂ energy requires further study. Current installed capacity pertains to ground-mounted installations. State action plan aims for cumulative solar projects to reach 3 GW (including 1.1 GW of Rooftop PV), with average CUF of 18%. State energy consumption was 23,983 units in 2022 Source: Solar Atlas; Govt. of Kerala; MEC+ analysis


Solar Energy Potential Available for Green Hydrogen Production *Potential Available in MW*

Kerala has 2,311 MW of wind potential

With high wind speed sites concentrated in two clusters in Palakkad and Idukki districts

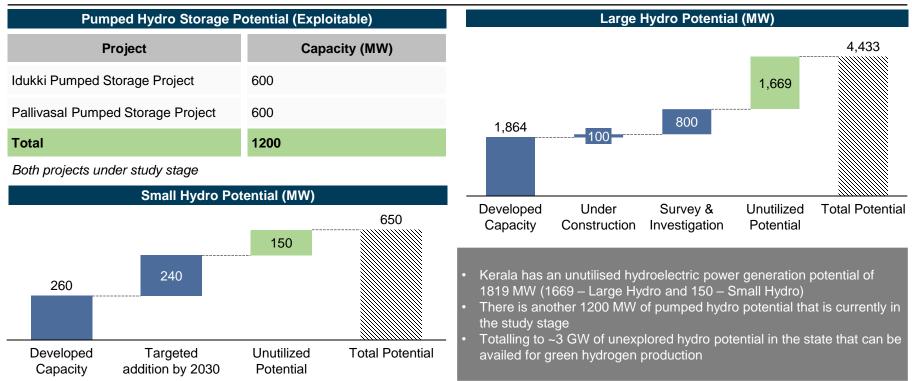
Wind Energy Potential in Kerala

Wind Speeds at 150m

Wind Energy Potential Available for Green Hydrogen Production

Potential Available in MW

- Kerala can produce 5874 MUs of energy with the un-utilised wind potential, translating to 105 kTPA of green hydrogen. This is equivalent to 24% of the total energy consumption of the state
- Given the target to be 100% RE dependent for energy by 2040, the actual available wind potential for green hydrogen production could be even lower

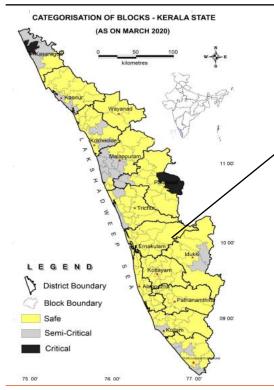

185 Note: * NIWE India Wind Potential at 120m; State Action Plan on climate change estimates the cumulative wind capacity addition to reach 395 MW by 2030; **Energy available for green hydrogen is only the total potential, actual availability estimation requires further studies; Average CUF considered at 35% Source: <u>NIWE; Global Wind Atlas; Kerala State Action Plan on Climate Change 2023-30; The Energy Report – Kerala;</u> MEC+ analysis

Kerala has ~3 GW unexplored potential

Across large hydroelectric, small hydro and pumped hydro storage that is unexplored and can be studied for green hydrogen production

Hydroelectric Power Potential in Kerala

In MW


186 Note: 240 MW of small hydro is targeted addition and can also be utilised for green hydrogen production Source: <u>Ministry of Power; CEA; SHP Policy;</u> MEC+ analysis

Water for electrolysis can be sourced from industrial pipelines

in initial phase and further alternatives like sea-water desalination can be considered; KWA supplies water in Kochi

Water Stress in Kerala

Groundwater Stress in different districts, 2020

Water Sources in Kochi Natural Sources

Ground Water

Ground water stress level in Ernakulam is rated as safe (Level of groundwater extraction at 47.26%)

Coastline

Ernakulam has a coastline of 46 Km, which is 8% of Kerala's total cost line

Rivers

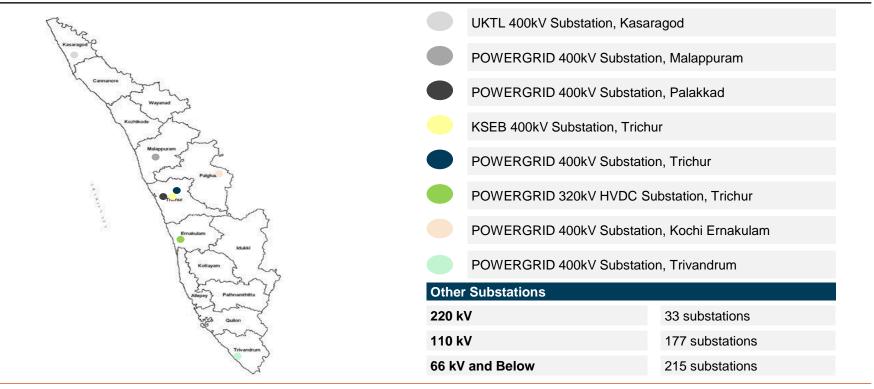
Periyar, the river with the largest discharge potential in Kerala flows through the district.

Rainwater

Ernakulam receives an annual average rainfall of 3099 mm with 132 average annual rainy days

Industrial Water Sources in Kochi

Water for Electrolysis				
 A second s	Vater Authority			
Water Treatment 5 (4 in Aluva, 1 in Maradu)				
Current Capacity	325 MLD			
New Proposal	190 MLD			
Total Capacity	515 MLD			
Expected Demand 478-600 MLD (By 2050)				

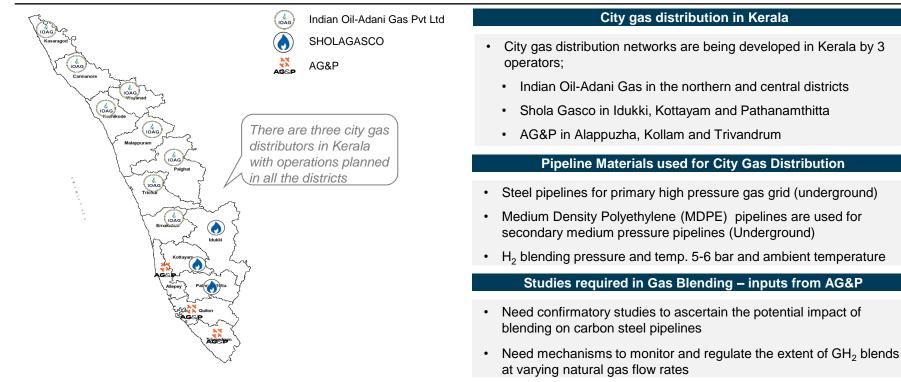

- Water supply is Kochi is carried out by Kerala Water Authority from two major water treatment plants located in Aluva and Maradu
- Even though water stress levels are safe, there are regions in western Ernakulam that face water shortages
- Hence, the water for electrolysis can initially be sourced through KWA industrial water pipelines (or other water supply projects like KINFRA project)
- Later with increasing demand alternatives like water desalination plants can be looked upon
- Water conservation and rainwater harvesting should also be promoted

Kerala has seven 400 kV and one 320 kV transmission substations

6 out of these 8 HVDC substations are PGCIL substations

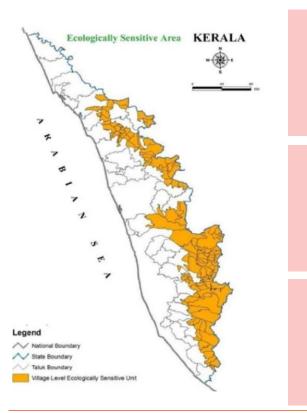
Transmission Infrastructure in Kerala

Substations in Kerala



3 operators in Kerala are developing city gas distribution network

AG&P suggests need for studies to be undertaken for blending green hydrogen in city gas


City Gas pipelines in Kerala

Gas distribution operators

Land Availability

is limited in Kerala with limited industrial areas, population density in western coastal areas and ecologically sensitive areas in the east

- From east to west the land in Kerala are in three layers lowland, midland and highland
- Kerala has a fragile ecologically sensitive region on its east covered by the Western Ghats
- Total land area 38.86 lakh ha. Of which more than 80% is under agriculture and forest sectors

- Kerala has been acquiring land for industrial development. The Directorate of Industries and commerce holds 10 industrial Development Areas, 25 Industrial plots and other estates totaling to 2500 acres
- · But majority of these areas are already allocated to industries

- Other players like Cochin Port, FACT, Refineries etc. have their own industrial complexes in the state
- Cochin Port Authority holds 2177 acres of land at various locations in Ernakulam district, the extent of land available for development needs to be studied

Land Resources

ndustrial Land

Others

Global H₂ Landscape and Valley Focus

Kochi Hydrogen Valley - Summary

Kochi Hydrogen Valley - Design Choices

Kochi Hydrogen Valley - Background Information

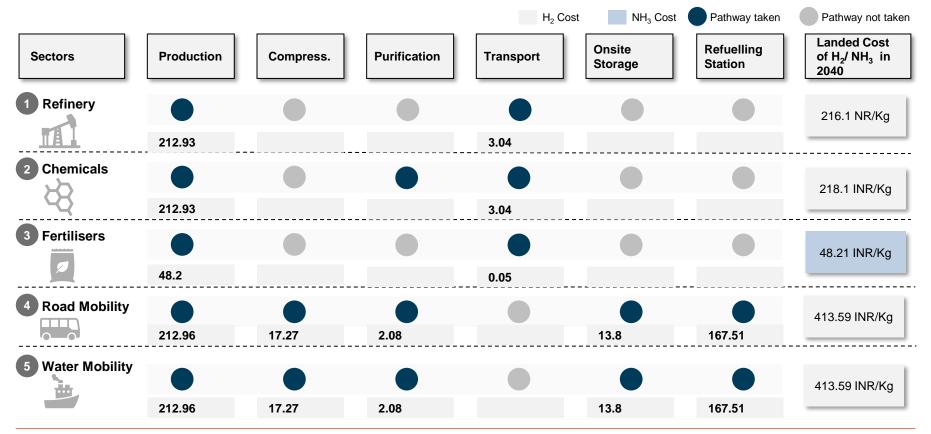
- Sectoral Deep Dives
- Kerala GH₂ Potential

Supply Side Economics

Kochi Hydrogen Valley - Global Valley Profiles

Appendix

Various costs get added to LCOH


depending on the configurations and design choices throughout From the production to point of consumption

Production	Compression and Purificatio	n Transportation	Storage	Refuelling Station
····		H ₂ transported in 4 ways	$\rm H_2$ can be stored in 3 forms	Refuelling is subjected to certain parameters
Kertrolysis Rused for production of H ₂ & O ₂ via electrolysis Mind energy	Green H2 is compressed to higher pressures depending on the use case requirement. It can range in between 30 bar to 300 bar depending on the use case with higher pressure usually required for mobility sectors Further, Green H2 is also purified with ranges in between 99.9% to 99.999% with higher purity levels required in mobility and fertiliser sectors	PipelineSuitable H_2 formsImage: ShipsImage: ShipsShipsImage: ShipsImage: Ships	Salt Caverns Rock Caverns Depleted gas fields Pressurised containers Liquid hydrogen Ammonia LOHCs Metal Hydrides	Image: Non-Section parameters Image: Non-Section parameters </td

Landed cost parameters of H_2 and design choice at each stage

Landed cost of hydrogen can range anywhere from 214-413 INR/Kg

depending on the use-case and the pathway taken in 2040

193 Note: Buffer Storage calculation are already a part of H₂ production costs; Decompression costs are not taken; Compress. : Compression Source: <u>IGEF-MEC+ Model</u>; MEC+ analysis

Five major factors drive the cost of producing green hydrogen

of which renewable capex and electrolyser capex form the 81% contribution to the cost

Factors contributing to gr	een hydrogen production costs	Significant contrib	ution 🦰 Medium contribution 📕 Nominal contribution
Factors	Description	% Contribution	
Renewable Energy (CAPEX)	Renewable energy is the source of the clean electricity needed to produce green hydrogen	61.2%	
Electrolyser Plant (CAPEX)	Electrolyser is the device that is used to split the water molecules into H_2 and O_2	19.4%	
Water Desalination (CAPEX)	Water desalination plant is used to provide a regular and sustainable source of water for electrolysis	1%	Resultant LCOH for green hydrogen production comes out to be around INR 330-490/Kg
Hydrogen Storage	Hydrogen storage is required to deal with intermittency of RE resource and maximise production	5.3%	
O&M Cost	Costs of regular operations and maintenance of RE, H ₂ storage Electrolyser and Desalination plant	13.6%	

194 Note: 1000 hours of banking hourly settlement is considered for the LCOH numbers; Grid charges not considered due to current regulations Source: IGEF-MEC+ Model

Cost reduction is expected in levelized cost of green H₂ production

 Renewable Energy cost is expected to be reduced by ~60-70% by 2030, which will can reduce the LCOH by

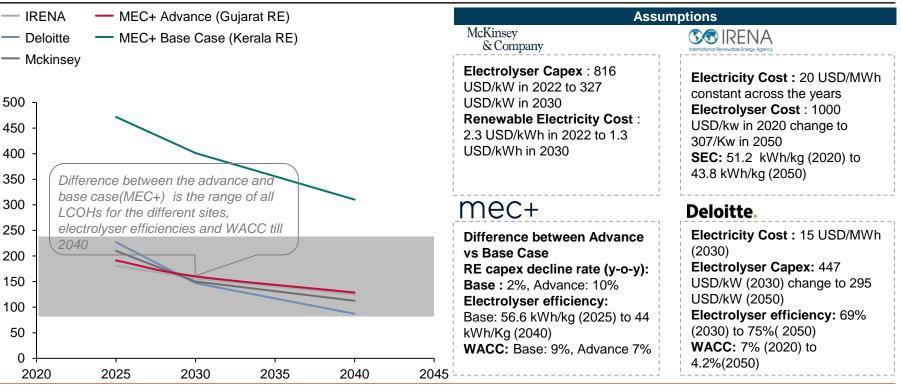
 Electrolyser capex is also expected to reduce by an equivalent percentage however, it's impact would be ~15-16% reduction in LCOH

 More mature technologies like desalination and tertiary would not see a lot of change

almost 35-40%

because of decline in the per factor cost, says various international studies and reports

Cost trends for each factor contributing to levelized cost of green hydrogen production

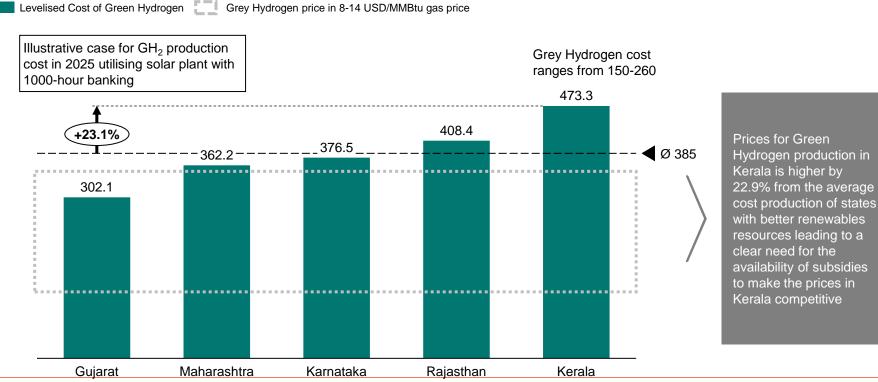

Factors	Trends	Evidence
Renewable Energy (CAPEX)		McKinsey & Company from 2022 prices Expects a 60% reduction by 2030 from 2022 prices
Electrolyser Plant (CAPEX)		McKinsey & Company from 2022 prices Expects a 62% reduction by 2030 from 2022 prices
Water Desalination (CAPEX)		Water desalination costs are expected to remain constant in the near term due to maturity of technology
O&M Cost		O&M costs for RE are already considered low, however electrolyser O&M are expected to reduce significantly by 2030
H ₂ Storage		Bloomberg H ₂ Storage costs are also expected reduced by ~ 10% from 2025 to 2050

195 Note: Grid banking and monthly settlement is considered for the LCOH numbers Source: <u>McKinsey: Chilean Hydrogen Pathway; BNEF; IEA; MEC+ analysis</u>

Levelized cost of H₂ is expected to fall steeply in the next decade

According to international reports; However wide range of costs can exist based on sites, capex, efficiency and WACC

Cost trends for each factor contributing to levelized cost of green hydrogen production *INR/Ka*



196 Note: For MEC+ model : Electrolyser capex is at 200000 INR/kW, Solar Capex: 3.6 INR/Cr, Wind capex: 8.43 INR/Cr Source: IRENA; Deloitte; McKinsey; IGEF-MEC+ Model

Kerala's low RE resources lead to a higher price premium

when compared with grey hydrogen despite India being cost competitive globally

Green Hydrogen production cost in different states of India in 2025 with 1000 hours banking *INR/kg*

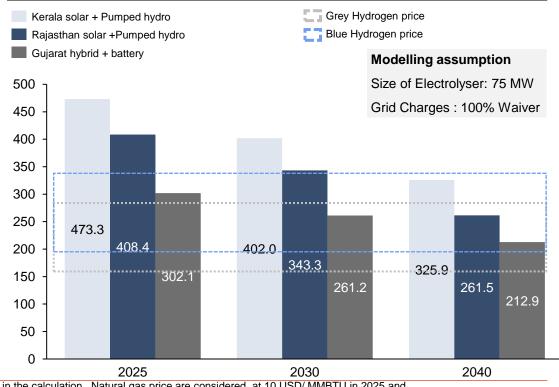
197 Note: Gujarat RE hybrid + battery, Rajasthan solar + pumped hydro, Kerala: Solar + Pumped hydro storage, Karnataka: RE hybrid + battery Source: <u>IGEF-MEC+ Model</u>; MEC+ analysis

Lower price premium with grey hydrogen can be maintained

with renewable energy for Kochi valley sourced from outside of Kerala leveraging some of the best sites with ISTS charge waiver

Government regulations for ISTS charges

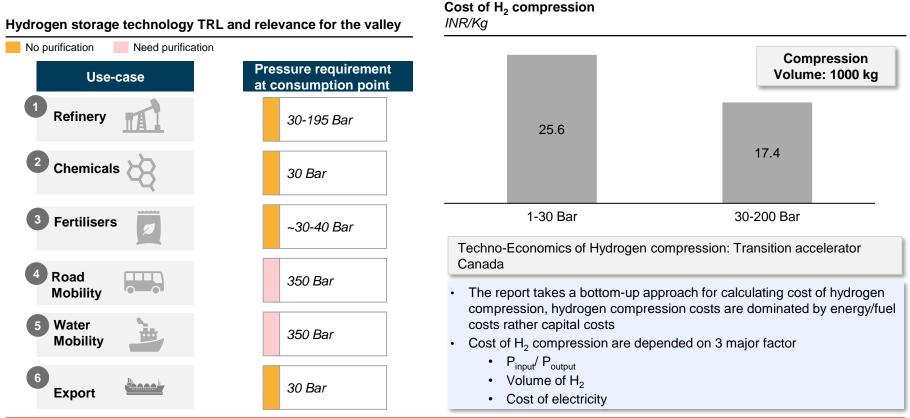
 The government of India has announced various waivers on renewable energy projects utilised for production of green hydrogen and green ammonia:


- ISTS Charges:

- ISTS charges waived off for plants commissioned after March, 2019 and commissioned before December 31, 2030 for 25 years
- Post December 31, 2030 the ISTS waiver will be phased out with applicability of charges ranging from 25%-100% with 100% charges applicable from January 1, 2034

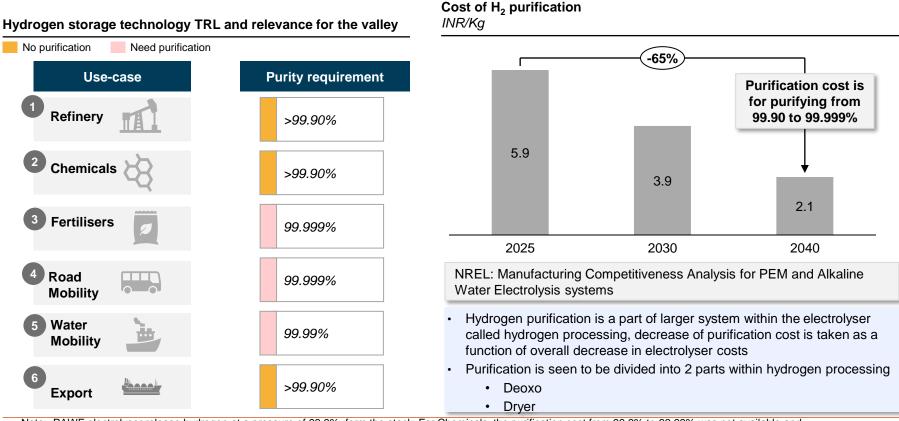
– Other charges:

 In line with the green energy open access rules, various states have also announced draft rules for waiver of additional surcharge and cross subsidy surcharge for projects utilised for GH₂ production


GH_2 production cost in different states of India with 1000-hour banking INR/kg

Note: ISTS losses and Intra-state transmission charges are waved off in the calculation, Natural gas price are considered at 10 USD/ MMBTU in 2025 and 12 USD/MMBTU in both 2030 and 2040 Source: IGEF-MEC+ Model; PIB: ISTS Charges

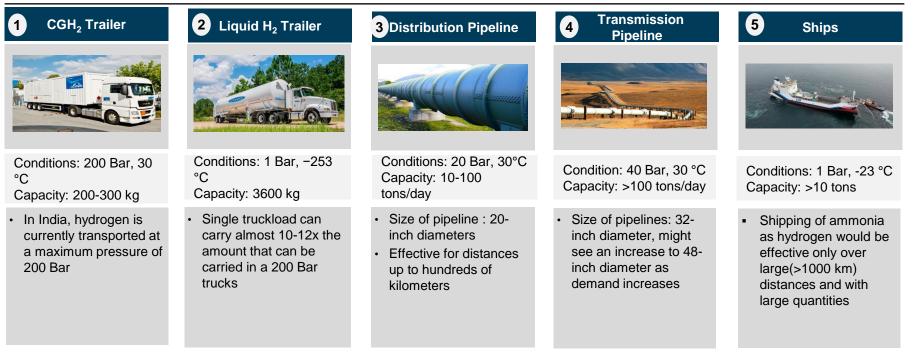
Compression costs are stable over time


given the maturity of compression technology; In Kochi valley, H₂ compression is vital for transport industries

199 Note: PAWE electrolyser release hydrogen at a pressure of 30 Bar form the stack; For refinery, the difference in pressure at point of consumption has to with the guality of the crude supplied; For Road transport and water transport; the compression of 200-350 Bar or 200-700 Bar is considered with Refuelling costs Source: Transition accelerator; MEC+ analysis

Purification costs are projected to drop by ~65% by 2040

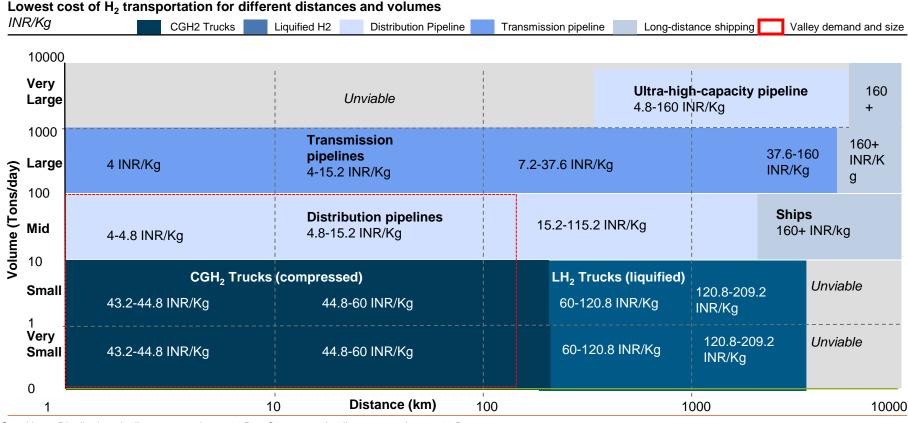
Which is in line with electrolyser CAPEX decline trend; For Kochi valley, H₂ purification is crucial for chemicals and transport industries



Note: PAWE electrolyser release hydrogen at a pressure of 99.9% form the stack; For Chemicals, the purification cost from 99.9% to 99.99% was not available and such we have taken the standard cost of purification for chemicals as well Source: NREL; MEC+ analysis

Transport of H₂ can be done in five ways

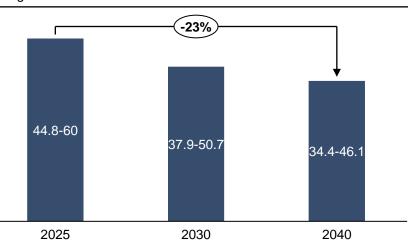
depending on the demand and distance from point of production


Hydrogen transportation technologies

201 Note: Largest ammonia carrier ships today have a capacity of carrying ~56000 tons of NH₃, we expect this number to increase Source: <u>European Hydrogen Backbone: Regulation for Max vessel pressure</u>; MEC+ analysis

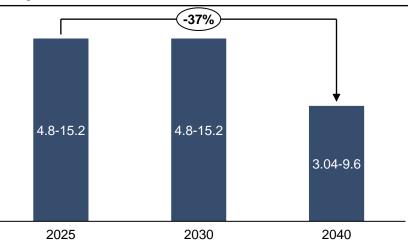
Cost is dependent upon the distance and volume of H₂

With GH₂ trucks and distribution pipelines being the cheapest modes considering the demand and distance of the valley



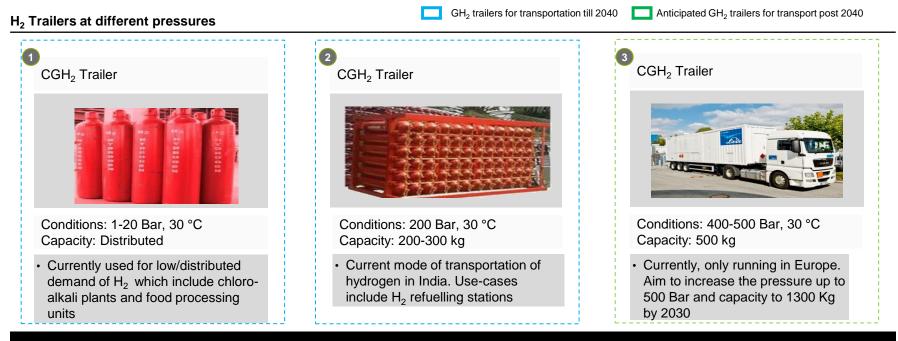
202 Note: Distribution pipelines are running at 40 Bar, Compressed trailers are running at 200 Bar Source: <u>Regulation for Max vessel pressure</u>; <u>Energy Transition Commission</u>; <u>BNEF</u>; MEC+ analysis

H₂ trailers and H₂ pipelines are cheapest transportation modes


which can be utilised for the various use-cases within the valley. The cost of transportation decreases by 23% and 37% respectively for the two modes due to regulatory push and adoption at scale

Cost of transportation via Green H₂ trailers INR/Kg

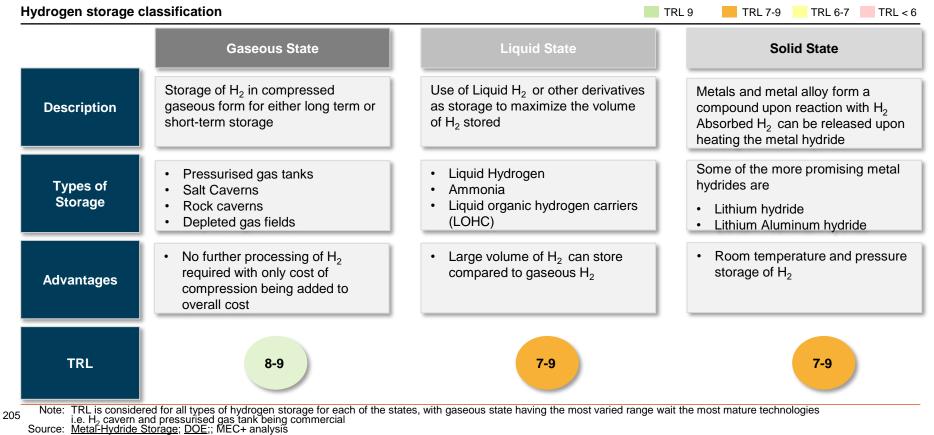
- Ideal for distributed use-cases where demand of H₂ is not continuous
- Cost is depended on both distance and volume of H₂ that needs to be transported
- We expect that cost reduction would be in the form of regulations which would enable higher compression tank and larger volume of H₂ to be delivered by 2040


Cost of transportation via distribution Green H_2 pipeline INR/Kg

- Ideal for transport of large volume of hydrogen where demand is continuous
- Transportation cost of $\rm H_2$ in pipeline is significantly depended on the volume of $\rm H_2$
- The cost of transport via pipeline is expected to be same until 2030. However, expect costs to decrease by 2040 due to large scale adoption

Currently Hydrogen can be transported till a pressure of 200 Bar

as per regulation. Anticipated regulatory advancements may raise transport pressures to 500 bar as the hydrogen economy matures which would allow for greater quantities of H₂ to be transported


In India, the most optimal mode of transporting hydrogen for larger demands (300-400 kg per day) is through GH₂ trailers at 200 Bar pressure. This is because current regulations do not permit pressures beyond 200 Bar for hydrogen transport In Europe, the European Union mandates hydrogen deliveries of around 1300 kg by 2030. With increased regulatory efforts and industry standards, it is anticipated that India will likely shift to transporting hydrogen in trailers at 400-500 Bar pressure, aligning with the current European standard.

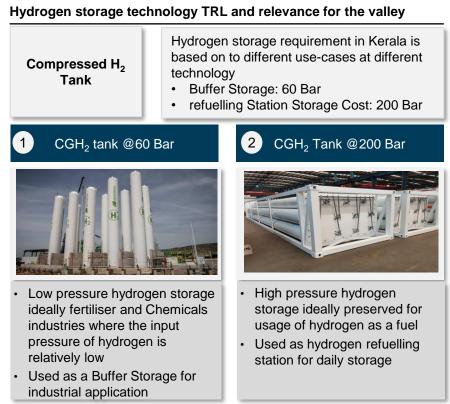
204

Source: Hydrogen capacity of GH2 road trailers; Last Mile Delivery of Hydrogen: Linde; MEC+ analysis

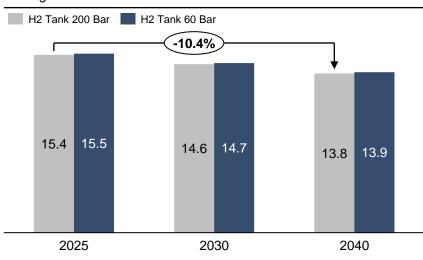
Hydrogen storage can be classified in 3 broad categories

which are still in various stages of development

Pressurised containers are the most effective storage technology


for the Kerala Green H₂ valley based on factors such as TRL, energy requirements and valley fit

Hydrogen storage technology TRL	TRL 9 TRL 7-9	TRL 6-7 TRL < 6		
Description	Storage Type	TRL	Additional Energy requirements	Relevance for valley
Salt Caverns	Geological	9	Min	
Rock caverns	Geological	2-3	Min	
Depleted gas fields	Geological	2-3	Min	
Pressurised Containers	Tanks	9	Min	
Liquid Hydrogen	Tanks	7-9	Min	
Ammonia	Tanks	7-9	Min Max	
LOHCs	Tanks	9	Min Max	
Metal Hydride	Tanks	7-9	Min	


206 Note: TRL: Technology Readiness Level, Additional energy requirements refers to additional compression, liquification, conversion and reconversion energy that is attached with each of the storage technologies Source: Energy Transition Commission; DOE; MEC+ analysis

Cost of hydrogen storage decreases by ~10.4% from 2025 to 2040

whether at 200 Bar or 60 Bar has less to do with cost economics and more to do with size of storage

Cost of storage till 2040 INR/Kq

- Storage cost are so similar due to fact both the Tanks are made from similar materials (Type 1) and as such there is very little difference in their per kg of H₂ cost in their capex
- Only difference between the cost would come from an upstream calculation which would include the compression of H_2

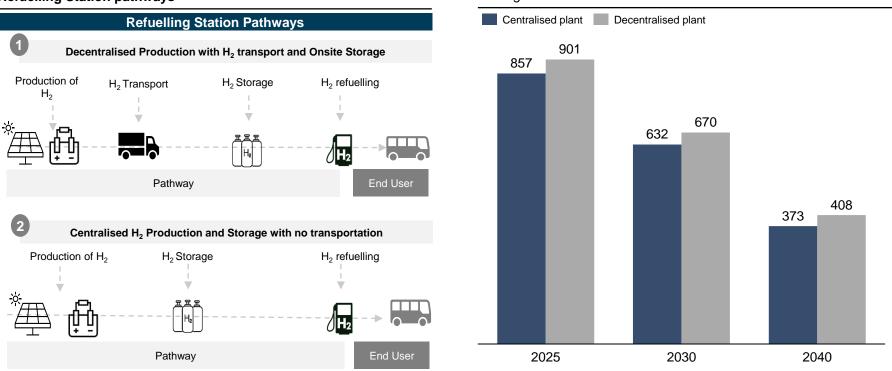
Note: Storage costs are highly sensitivity to cycle rate the lower cost of hydrogen storage is considered for a daily cycle rate, and the higher cost is for hydrogen storage cycled weekly. For the 60 Bar buffer storage, our model already incorporates the cost within the production costs Source: <u>IGEF-MEC+ Model; Energy Transition Commission; DOE;</u>; MEC+ analysis 207

A 350 Bar outlet pressure refuelling infrastructure is optimal

for the Kochi H₂ Valley, considering both road and water transportation

Refuelling Station				TRL 8-9 TRL 7-	8 TRL 6-7 TRL < 6
	Pressure	Refuelling Amount	Single tank	TRL	Relevance for valley
Car 🚗	700 Bar	3.5 kg	3 minutes	7-8	*
Truck	350 Bar	35-40 Kg	20-30 minutes	8-9	
Bus	350 Bar	35-40 Kg	10 minutes	8-9	
Boats	350 Bar	35-40 Kg	20-30 minutes	7-8	
Forklift	350 Bar	3.2 kg	2-3 minutes	8-9	
Trains	350 Bar	170 Kg	30 minutes	7-8	

208 Note: Despite there being commercially available H₂ passenger cars, there are still low adoption and usage as Electrification is a better alternative as is the case with trains Source: Introduction Stratégies for Hydrogen Infrastructure; Green hydrogen industrial cluster guidelines; DOE; MEC+ analysis

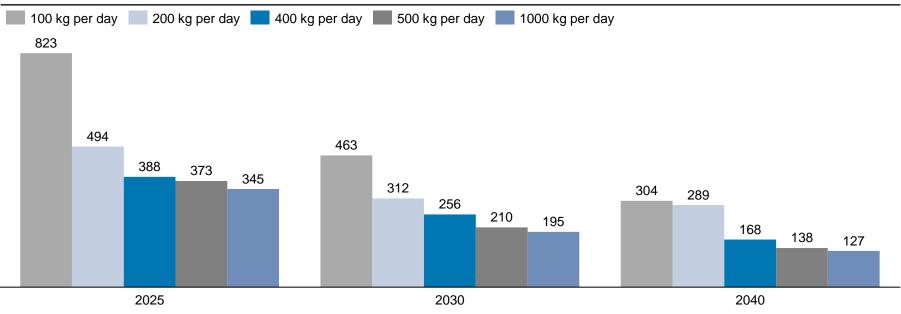

Centralised refuelling plant is cheaper than decentralised plant

INR/Kg

Landed cost of refuelling for a centralised vs decentralised plant

Refuelling stations have 2 design variations based on production location, consumption point and storage facility, centralised and decentralised

Refuelling Station pathways


Note: refuelling stations pathways are subjected to consideration of various factor like production location, infrastructure and size of projects. For the centralised plant an electrolyser has been taken with in-situ storage of H₂, and for decentralized plant electrolyser and a transportation distance of 20km have been taken Source: Hysolar; SMT AG; IGEF-MEC+ Model; MEC+ analysis

Refuelling costs are expected to drop by ~63% from 2025 to 2040

Refuelling costs are depended upon the size of the refuelling station, with there being a 58% cost difference between 100 to 1000 kg/day

Refuelling cost comparison at various capacities kg refuelling station

INR/Kg

 refuelling costs decrease as the size of the refuelling station increases, with the there being a 58% cost difference between 100 to 1000 kg per day station

• refuelling costs are expected to go down as the demand for hydrogen refuelling increases with a 63% decrease estimated over 2025 to 2040

210

Source: Primary; Introduction Stratégies for Hydrogen Infrastructure; ICCT; NREL; MEC+ analysis

Global H₂ Landscape and Valley Focus

Kochi Hydrogen Valley - Summary

Kochi Hydrogen Valley - Design Choices

Kochi Hydrogen Valley - Background Information

Kochi Hydrogen Valley - Global Valley Profiles

Hamburg Green Hydrogen Hub - Germany

- HEAVENN The Netherlands
- Basque Hydrogen Corridor Spain
- Green Hydrogen and Chemicals Oman
- Flemish Ports Hydrogen Valley Belgium

Appendix

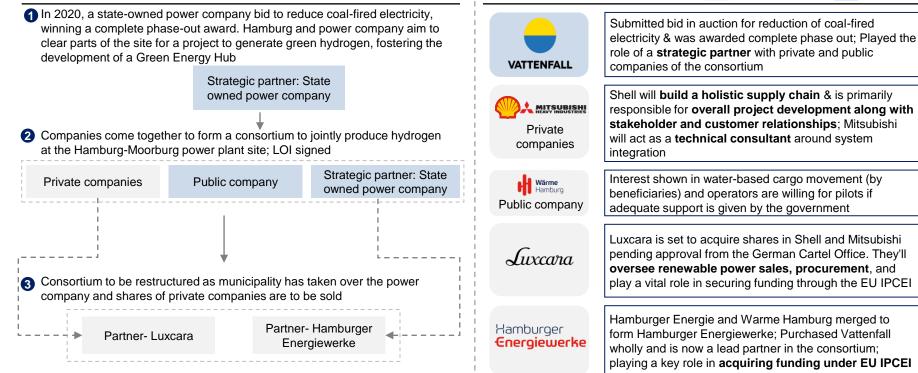
In Hamburg, the investments for the GH₂ valley are planned

over shutdown of a coal fired plant for various clusters of heat, mobility, port and industries

Overview						
General Overview of the Valley			Valley genesis: RE f	ocussed + supply infra dr	iven	
• Name: Hamburg Green Hydrogen Hub (HGHH)	Hamburg Green Hydrogen Hub (I on the site of the former power pl			In 2020, Vattenfall secured the complete phase-out of a coal- fired power plant through an auction. By July 2021, the plant		
Valley purpose: Decarbonisation of Hamburg's industry and port	s Moorburg		was closed and transformed into the HGHH. The valley has various clusters including:			
 Hydrogen Production Tech: Not available Production Capacity: 11,500 tpa 			Heat 2	Heat Mobility Port		
	and a second	?	Industry			
Investment Summary (INR Cr)	Timeline of valley developme	nt and investme	ents			
Envisioned investment 6,195	purchased the former Federal Vattenfall Heizkraftwerk Eco		GHH included in German deral Ministry of onomics' projects under	Luxcara to take over shares from Shell and Mitsubishi subject to	Expected production	
4,130			nsideration for funding der the EU IPCEI prograr	approval of the German Federal Cartel Office	start	
EU grant Luxcara, Total						
Energiewerke	2020 Jan	-Apr 2021	May 2021	2023	2026	
Note: The project's cost is INR 6195 Cr. Luxcara and Hamburger Energiewerke will cover ~one-third, while the EU's IPCEI program is anticipated to finance the rest. However, approval for HGHH's application is still pending	Vattenfall submitted bid in auction for reduction of coal-fired electricity & awarded complete phase outHamburg H2 network formed with 9 companies & 9 project of which HGHH is a part		purchased the former Vattenfall Heizkraftwerk			

213 Note: 1 EUR = INR 88.5 Source: <u>HGHH; News Article; Webinar;</u> MEC+ analysis

The governance structure for the valley stems from a collaboration


Governing body and its functions

Public-Private bodies

Public bodies

between public private players to create a consortium

Governance framework of the valley

214 Note: LOI- Letter of Intent Source: <u>HGHH;;</u> MEC+ analysis

Development is expected to create a Potential Demand & Supply

This development is expected to create a potential demand and supply of 2,22,000 and 11,500 TPA respectively with demand offtake guaranteed by mobility, heat, industries and import

Overview		
Demand volumes estimated (tons per annum)	Supply volumes estimated (tons per annum)	Benefits
Initial demand	Estimated supply	
1,20,000 1,00,000 Estimates currently unavailable	11,500	
Industrial Port Heat Mobility feedstock	Initial supply (2026)	Jobs and GVA
 Demand volumes estimated (tons per annum) Import: Import from production facilities globally, conversion of ammonia to GH₂ via Air Products' facilities in Hamburg before distribution to local buyers and Northern Germany Heat: 13 MW of usable heat enough to supply up to 6,000 households Mobility: European logistics hubs including trucks, shunters, ships, terminal equipments Industry: to be done in 4 stages starting with green steel & aluminum, port & sea import, hydrogen backbone connection and finally green refineries & 	Supply sources for renewable energy • Onshore wind • Offshore wind • Solar Supply sources for renewable energy • Connected to the national 380,000-volt transmission grid and the 110,000-volt grid of Hamburg • Overseas vessels can dock on-site, using the port as an import terminal	Presently no evidence of the number of jobs created/GVA is available. CO₂ emission reduction Around 92,000 tpa of CO ₂ is estimated to be reduced
• Future sector: Chemicals	 Existing 45 km gas network suitable for H₂ by 2025 and expanded to 60 km by 2030 	

Source: Future Hamburg (Industrial feedstock); Future Hamburg (Port); Infra supply; Webinar; MEC+ analysis

The valley will see a participation from various stakeholders

spread across government and private entities for investments, governance and project development

Types of stakeholders involved in creation of Hamburg Green Hydrogen Hub

	Investment Stakeholders	Knowledge Institutions, R&D	State Entities	Private Companies
Role	Investment for the valley is a mixture of public and private co-funding . Further, the valley has applied for funding under EU IPCEI	The Cluster Agency connects numerous experts with R&D background including companies, universities and research or funding institutions to promote innovative projects	The municipal company is an offtaker in the hub with a goal to dispense heat using existing waste heat from industry, wastewater, recycling by 2030 and in the future from green hydrogen	Initiate valley development by bringing in their expertise and required investments
Participating entities	Luxcara Hamburger Gnergiewerke Luxcara and Hamburger Energiewerke will cover ~one- third of total cost; EU IPCEI program is anticipated to finance the rest. However, approval is still pending	Hydrogen Hamburg Renewable Energy HamburgThe Hamburg Green Hydrogen Hub is listed in the projects of the Cluster Agency	Hamburger Energiewerke is a municipal company that supplies around 500,000 residential units in Hamburg with local district heating	✓ Luxcara✓✓ Luxcara is taking over the sharesKom Shell and Mitsubishi.Subject to the approval of theGerman Federal Cartel Office

Global H₂ Landscape and Valley Focus

Kochi Hydrogen Valley - Summary

Kochi Hydrogen Valley - Design Choices

Kochi Hydrogen Valley - Background Information

Kochi Hydrogen Valley - Global Valley Profiles

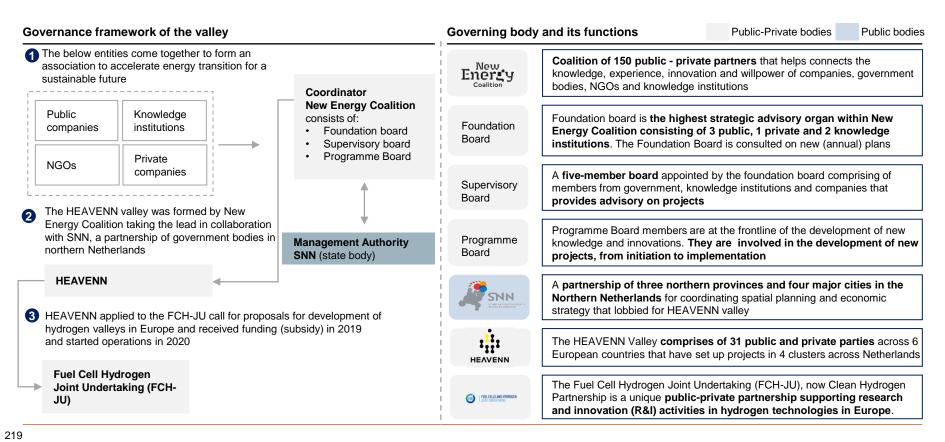
Hamburg Green Hydrogen Hub - Germany

HEAVENN – The Netherlands

- Basque Hydrogen Corridor Spain
- Green Hydrogen and Chemicals Oman
- Flemish Ports Hydrogen Valley Belgium

Appendix

In Netherlands, the investments for the GH₂ valley are planned


in the form of clusters comprising of individual projects where project partners form SPVs to undertake the project

General Overview of the Valley			Valley genesis:	RE focussed	
 Name: Hydrogen Energy Applications in Valley Environments for Northern Netherlands (HEAVENN) Valley purpose: Large scale demonstration project supported by public and private bodies Hydrogen Production Tech: PEM + Alkaline 	province of Northern Netherlands across 6 regions		value chain and create scalable business models for regional energy system The valley is divided into the following 5 clusters:		gen throughout the s models for the usters:
electrolyser				2 Storage and built	3 Green
Production Capacity: 2,810 tons/year using	💡 Hoogeveen 💡 Zuidwei	nding 9 Emmen	park Delfzijl	environment	mobility
offshore wind plant at 56% CUF	Eemshaven ? Delfzijl	Groningen	 Emmen industry 	Studies & replication	
Investment Summary (INR Cr)	Timeline of valley develo	pment and investmen	ts		
Secured investment Envisioned investment 24,780	Applied for FCH-JU funding programme for valley development	New Energy Coalition began valley development and execution	35.7 MW	rolysers with a total of to be installed electrolysers in FID	Estimateo Project completio
23,984				0.222	
177620	2019	2020		2022	2025
EU grant Public-Pvt Envisioned Total investment* lote: The funding is not inclusive of RE costs as	Received a grant of INR 177 Cr and public-private co funding of INR 620 Cr		Groningen	nds and the Province of allocated INR ~17 Cr for nt of Chemical park Delfz NR ~11 Cr	
pecific set up of projects for RE generation are not een in the valley yet	Note: Exact split of investm	ents for all projects in c			

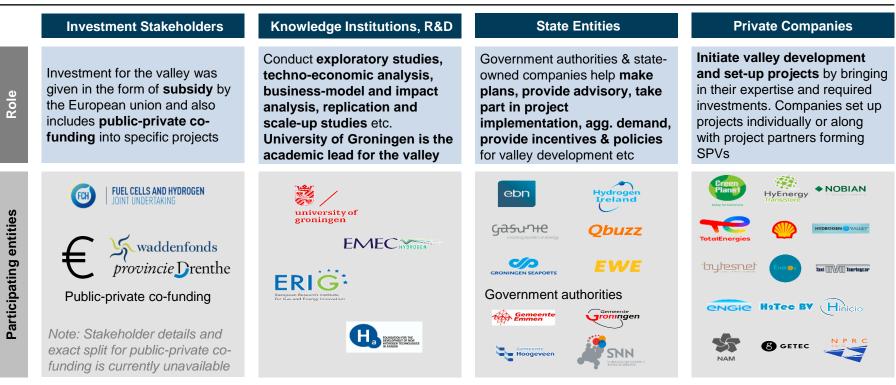
may differ Source: <u>HEAVENN; NEC; Investment Plan; Mission Innovation Report; HEAVENN News; News Article;</u> MEC+ analysis

The governance structure for the valley stems from a collaboration

between an association of public-private bodies and the Northern Netherlands Alliance (SNN)

Development will create a Demand & Supply

of 3,455 and 2,810 TPA respectively with demand offtake guaranteed by municipalities in the initial phase


Demand volumes estimated (tons per annum)	Supply volumes estimated (tons per annum)	Benefits
Initial demand Scaled demand 2,800 7,300 315 500 340 680 Industrial Heat & power Mobility feedstock Note: Currently, there is no evidence of subsidy provided on offtake Demand volumes estimated (tons per annum) Domestic utilisation focused on the following: On-going projects Chemical industry - Delfzijl park, Emmen industry Heating - heating system for homes (old and new) Future projects	Estimated supply 2,810 17,000 2,810 Initial supply (2022) Potential scaled supply Supply sources for renewable energy Onshore wind Offshore wind Solar	According to Province of Groningen, Northern Netherlands envisions to attract over 25,000 hydrogen related jobs by 2030. Recurring jobs: 22,500 Non-recurring jobs: 2,500 These jobs span across the entire value chair of a hydrogen valley including manufacturing and supply chain As HEAVENN is the pioneer valley in Northern Netherlands and also Europe , the valley will create socio-economic benefits for the region and help realise this goal of 25,000
 Aviation (Groningen airport) - multi-fuel filling station serving groundside, airside; hydrogen drones and ground handling equipment on airside Mobility - 4 trucks and 8 light duty vans to be purchased by Municipality of Groningen; 8 trucks & 100 cars available on lease by Green Planet Power back-up - Bytenest datacenter 	 Supply sources for renewable energy Existing offshore wind capacity developed in the North Sea Access to dense gas infrastructure, with high- quality parallel gas pipelines, salt caverns for hydrogen storage, and ports in Delfzijl and Eemshaven 	jobs CO_2 emission reduction The Delfzijl park which is the largest on-goin project in HEAVENN is estimated to reduce 27,000 tons $CO_2e/year$

Source: DJEWELS; HEAVENN; GH, Netherlands; Aviation; News articles; Groningen; MEC+ analysis

The valley will see a participation from various stakeholders

spread across government and private entities for investments, governance and project development

Types of stakeholders involved in creation of HEAVENN

Global H₂ Landscape and Valley Focus

Kochi Hydrogen Valley - Summary

Kochi Hydrogen Valley - Design Choices

Kochi Hydrogen Valley - Background Information

Kochi Hydrogen Valley - Global Valley Profiles

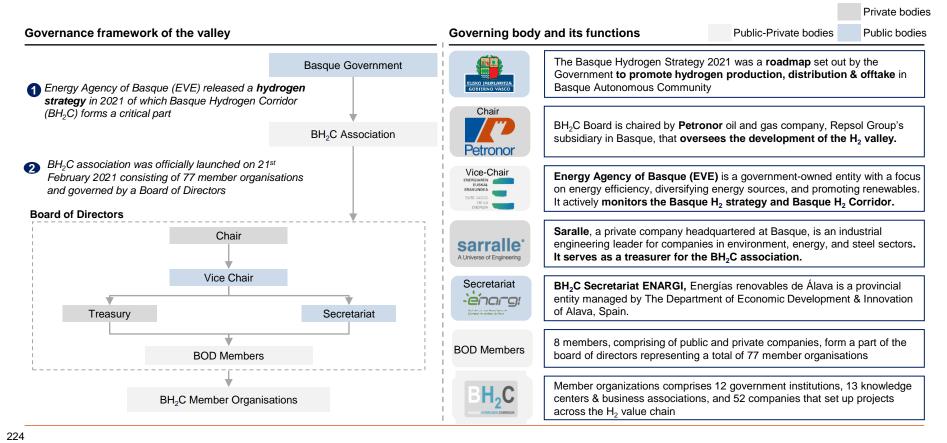
- Hamburg Green Hydrogen Hub Germany
- HEAVENN The Netherlands

Basque Hydrogen Corridor - Spain

- Green Hydrogen and Chemicals Oman
- Flemish Ports Hydrogen Valley Belgium

Appendix

In Basque, investments for the GH₂ valley are secured for 5 projects


of 332.5MW of electrolysers as well as renewable energy and other infrastructure

Overview					
General Overview of the Valley			Valley genes	is: RE focussed	
 Name: Basque Hydrogen Corridor (BH₂C) Valley Purpose: To undertake large scale demonstration projects backed by public-private collaborations and scale up to 90% of H₂ demand Hydrogen Production Tech: Alkaline + AEM + PEM, thermochemical cycles Production Capacity: 1,250 tpa in 2024 going 	The valley is located in th Community of Spain		activities acros by member org Production	s the H ₂ value cha janizations of BH ₂ BH ₂ C Mobility	•
to 13,250 tpa in 2025 & 33,250 tpa in 2030	Bay of Port of Bizkaia Biscay Bilbao Province		Transpo storage	Transport, distribution, storage	
Investment Summary (INR Cr)	Timeline of valley dev	elopment and investm	ents		
Secured investment Envisioned investment 12,246	Hydrogen Strategy released by the Basque government & BH ₂ C association	Petron for INR	electrolyser by or & Saudi Aramco 531 Cr in Bilbao r synfuel productio	Bilbao refinery	carbonise deployment
6,499 5,747 1,951 3,796 6,499		•			
RRF Public- Envisioned Total	2021	2023	2024	2025	2030
Funding private investment investment investment Investments for Basque have been made for electrolyser capacity of 332.5MW as well as RE and other infrastructure development	Basque allotted INR 1951.4 Cr of RRF* funds to BH ₂ C under Euskadi Next Program	2.5 MW electrolyser installed for INR 79 Cr by Petronor at its Bilbao refinery	plann	olyser factory ed by Sener for 8.5 Cr (IPCEI tt)	20 MW (in 2025) & 200 MW (in 2030) of electrolyser by H ₂ yFive for a total of INR 3097.5 Cr

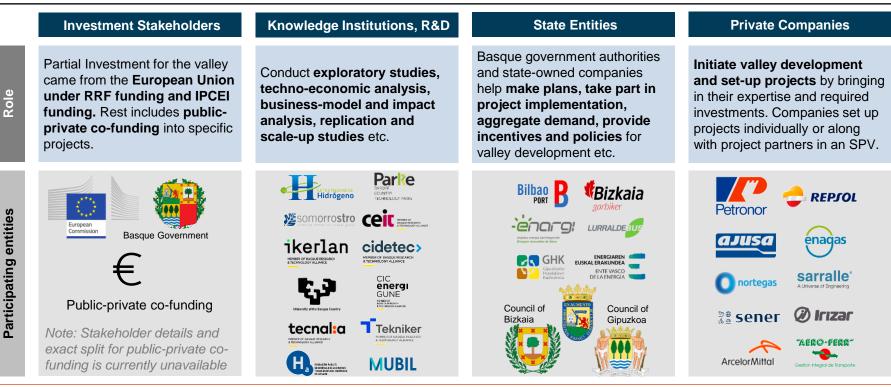
223 Note: Recovery and Resilience Facility (RRF) forms a core part of Next Generation EU Economic Recovery Fund 2021-2026; 1 EUR = 88.5 INR Source: <u>Basque H₂ Strategy; BH₂C; Bilbao Port; EUSKADI; News Article; Repsol Investor Update 2023; Press Release; HyFive; MEC+ analysis</u>

Governance structure for the valley is in the form of an association

governed by a board of directors comprising public and private enterprises

Development will create a Demand & Supply

of 3,455 and 2,810 TPA respectively with demand offtake guaranteed by municipalities in the initial phase


Overview		
Demand volumes estimated (tons per annum)	Supply volumes estimated (tons per annum)	Benefits
Demand	Estimated supply	Jobs created
Current Outlay 13,250 250 1,250	Additional projects under planning and not yet funded 33,250	The project is expected to create around 7,753 jobs by 2026 throughout the value chain:
	13,250	• Direct Jobs: 2,101
202320242025Target (2030)Basque government desires to meet 90% of the current	250 1,250	Indirect Jobs: 3,918
H_2 demand (50,000 tpa) with GH_2 by 2030	2023 2024 2025 2030	• Knock-on effect: 1,734
Demand volumes estimated (tons per annum)	Supply sources for renewable energy	Gross value addition
The demand is predominantly domestic driven Primary offtake sectors are: Demand from funded projects (Substitution based)	WindSolar	The project is expected to add INR 20,740 Crores to the economy
• Petrochemical: H ₂ for synfuel production (10 MW		• Direct effect: 12,250 Crores
project), as feedstock at Petronor refinery (100 MW project), and 2.5 MW to service Petronor refinery along		Indirect effect: 7,208 Crores
with Abanto Tech Park's H ₂ refuelling stations	Supply sources for renewable energy	Knock-on effect: 1,292 Crores
 H₂y Five use-case: H₂ used as replacement fuel for natural gas to decarbonise the Amorebieta Power Plant run by White Summit & Castleton (CCI) 	Three electrolyser plants will be setup by Petronor, 2.5MW in 2022, 10MW in 2024 and 100MW in 2025	CO2 emissions reduction
 Demand from future projects (Conversion based) Mobility use-case: Deployment of H₂ bus fleet by Provincial Council of Araba, Gipuzkoa and Bizkaia 	220MW of electrolysers to be installed by H_2y Five under Benort H_2 initiative in three phases (5MW & 15MW in 2025, and 200MW in 2030)	The Basque Hydrogen Corridor is expected to make a significant contribution to the environment, with a reduction of 1,281,673 tons/year of CO2 emissions

225 Note: For supply volumes, the conversion rate considered is 100 tons of green hydrogen per MW of electrolyser capacity Source: <u>Basque Hydrogen Strategy 2021; BH₂C website; BH₂C projects; MEC+ analysis</u>

The valley will see a participation from various stakeholders

spread across government and private entities for investments, governance and project development

Types of stakeholders involved in creation of Basque Hydrogen Corridor

Global H₂ Landscape and Valley Focus

Kochi Hydrogen Valley - Summary

Kochi Hydrogen Valley - Design Choices

Kochi Hydrogen Valley - Background Information

Kochi Hydrogen Valley - Global Valley Profiles

- Hamburg Green Hydrogen Hub Germany
- HEAVENN The Netherlands
- Basque Hydrogen Corridor Spain

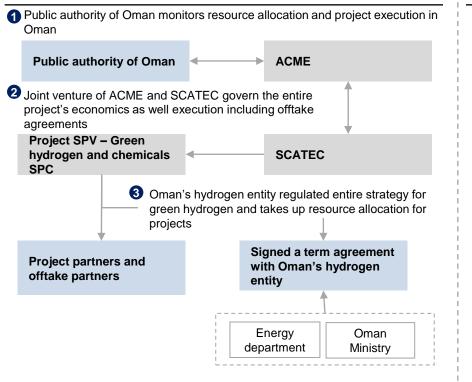
Green Hydrogen and Chemicals - Oman

Flemish Ports Hydrogen Valley - Belgium

Appendix

In Oman, the development of green H2 valley is anchored

across project specific investments where the govt. of Oman does resource allocation, and the rest is done via debt-equity financing


Overview		
General Overview of the Valley		Valley genesis: RE focussed
 Name: Green Hydrogen and chemicals Oman Valley purpose: Single project for Green Ammonia production and offtake 	Green hydrogen and chemicals Oman is planned in the SEZ of Duqm with a 92km ² land allotted for the project	ACME signs land agreement with Duqm
 Hydrogen Production Tech: Alkaline electrolyser Production Capacity: Initially 100,000 tons/year green ammonia gradually increasing with increase in electrolyser capacity 	Duqm	Receives valley status Green Hydrogen and Chemicals SPC
Investment Summary (INR Cr)	Timeline of valley development and investmer	nts
Secured investment Envisioned investment 20,750	Signed land agreement with Duqm's public authority & secured approvals Mar 2023 ACME secured Ioan of IN Crore from lender RE	NR 4000Dec 2024scale up the facility andm Indian- Junlead to green ammonia
16,750		
Government Initial Ioan Envisioned Total support investment* investment	Aug 2021Received internationalJu- 2022certificate for commercial20production of greenammonia	IIOperation of first phaseNot023containing 300 MWspecifiedelectrolyser and 500 MW of solar plant with bankingsolar plant
through land**	Phase 1	Phase 2

228 Note: *Envisioned investment is based on current estimations provided by press releases and may differ; ** Exact figures not known Source: Investment; Loan; Interview transcript; SCATEC; ACME; MEC+ analysis

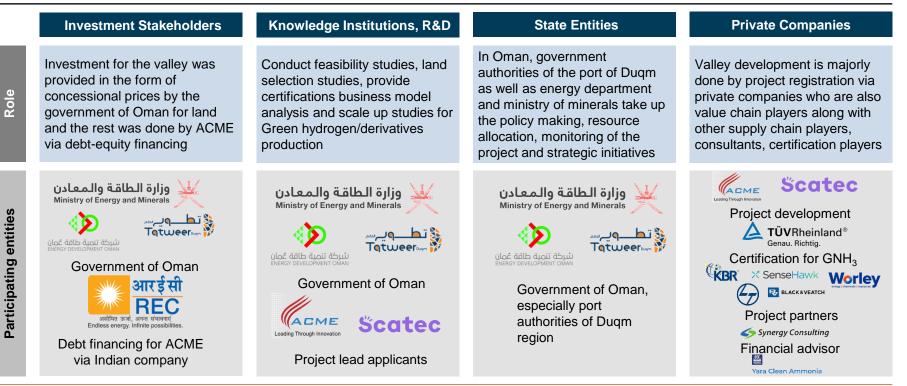
The governance structure for the valley stems from the initiative

taken by the private companies to setup a project in Oman under the support of the government

Governance framework of the valley

Governing body and its functions Public-Private bodies Public bodies							
Tatweer – a wholly owned subsidiary of Oman's Public Authority for Special Economic Zone (OPAZ) identified and signed an agreement for the land parcel to be allocated to ACME							
Central and independent entity owned by Oman government responsible for coordinating and overseeing the entire implementation of the project, conducting auctions for land allocation for GH ₂ projects, and managing common infrastructure							
Ministry of Energy and Minerals and Energy Development Oman own Hydrom and are responsible for regulatory and policy making initiatives for green hydrogen in Oman							
Private companies ACME and SCATEC setup a joint venture to develop the project end to end for green ammonia production as well as offtake wherein ACME takes the initiatives to collaborate with the government of Oman via land agreements							
Several players collaborate with the project company to supply electrolysers, conduct feasibility and consultancy studies. Project also signed a term agreement with the company YARA Clean Ammonia as an offtaker							

A demand and supply creation of 100,000 TPA


scaled up to supply of 1.2 MTPA of green ammonia is expected

Demand volumes estimated (tons per annum)	Supply volumes estimated (tons per annum)	Benefits
Ammonia offtake	Green ammonia	
	12,00,000	
1,00,000 Initial Phase	1,00,000 Initial supply Scaled supply	The Ministry of Energy and Minerals in its green hydrogen strategy aims to create 70,000 jobs as a part of green hydrogen development in Oman
Demand volumes estimated (tons per annum)	Supply sources for renewable energy	This is envisioned at an electrolyser capacity of 10 GW
The valley focus is majorly on derivative	Solar capacity 5,500	Since Oman follows a project-based
production as major demand for the Oman green hydrogen valley comes from green	500	approach of governance structure, the
ammonia	Initial capacity Scaled capacity	benefits created directly flow from the government vision in the hydrogen
ACME has signed a term sheet agreement	Banking also available to store the excess power	strategy
with a fertiliser giant Yara for the complete offtake of the produced GNH ₃ in phase 1	Supply sources for renewable energy	Basis this, <i>the ACME project is</i>
As of now, there is no evidence for government support as subsidies/offtake for the demand creation in Oman	 ACME and Yara to develop a self infrastructure for supply wherein the land is provided by the Oman government at some concessional rates 	expected to create 2100 jobs in Oman in the initial phase which when scaled up can create 24,500 jobs

The valley will see a participation from various stakeholders

spread across government and private entities for investments, governance and project development

Types of stakeholders involved in creation of Green Hydrogen and Chemicals Oman Valley

Global H₂ Landscape and Valley Focus

Kochi Hydrogen Valley - Summary

Kochi Hydrogen Valley - Design Choices

Kochi Hydrogen Valley - Background Information

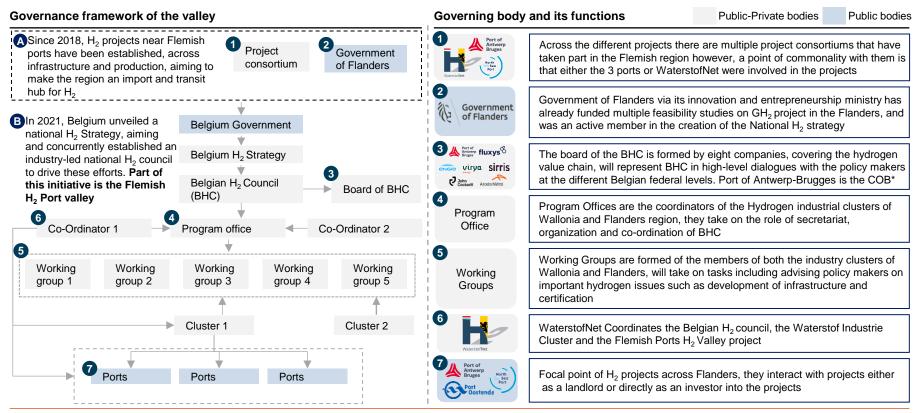
Kochi Hydrogen Valley - Global Valley Profiles

- Hamburg Green Hydrogen Hub Germany
- HEAVENN The Netherlands
- Basque Hydrogen Corridor Spain
- Green Hydrogen and Chemicals Oman

Flemish Ports Hydrogen Valley - Belgium

Appendix

Flemish Ports Hydrogen Valley is anchored


around the port aggregation and gas pipeline infrastructure in Belgium, with an emphasis on import of GH₂ and its derivates into Europe

Overview		
General Overview of the Valley		Valley genesis: RE focussed
 Name: Flemish Ports Hydrogen Valley Valley purpose: Large scale port and infrastructure development project for green hydrogen upscale Hydrogen production tech: Alkaline + PEM + CCUS + Import (international) Production Capacity: 6,500 tpa (2024), 26,250 	The valley is located close to Northern Belgium, in the Flemish region	Since 2018, the 3 ports have seen various hydrogen projects. These ports are complementary in their activities, where they combine steel and chemical industries with energy hubs and offshore renewable energy production. Their strategic positions serve as vital gateways to European H_2 infrastructure networks. As such, they have been given the title of "H ₂ Valley"
tpa (2025), 27,250 tpa (2026) and final target of	North State Port of Antwerp Po	Port of Antwerp-Bruges North Sea Port Oostende
31,200 tpa	Flemish Ports Hydrogen Valley	Antwerp Bruges Corport
Investment Summary (INR Cr)	Timeline of valley development and investme	nts
Secured investments Envisioned investments 19,470 2,726	INR 8.85 Cr for the feasibility study for Power to Methanol project from Flemish GovernmentPlug Power 100 Electrolyser in Po North-C-Hydroge 67 MW plant in the Ghent	ort of Antwerp; en will have a 38 Cr funding from Project
16,744	2019 2020 2022	2023 2030
397 State EU Funding Envisioned Total Funding Investments Investments	Valley Formation Port of Oostende, DEME and PMV to build a 70 MW The Hyoffw funded with from the EU	Ind 25 MW plantPlug Power 10 MW electrolyserINR 203.5 Cr(offshore) with INR 193 Cr fundingJ and INR 70.8from EU; Belgium Govt approved INR

233 Note: Total investment is taken from Mission Innovation platform EU, break up of investment is not available currently Source: <u>Port of Antwerp-Bruges; Clean Hydrogen Partnership; WaterstofNet;</u> MEC+ analysis

In Belgium, the genesis and governance of the valley stems

from a singular goal of the government to become the transit and import hub of H₂ in Europe

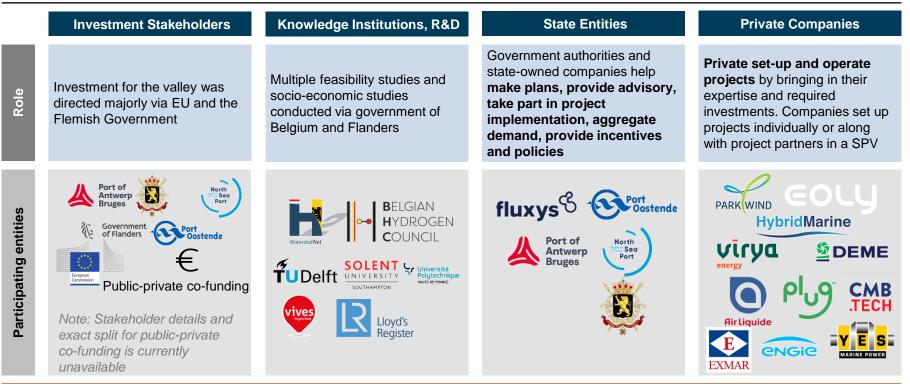
234 Note: Chairman of the Board

Source: Belgian Hydrogen Council; Port of Antwerp-Bruges; Waterstof Industrie Cluster; MEC+ analysis

Development will create an Aggregation of Green H₂ & Derivatives

supply near the points of consumption in the Flemish ports

Overview **Benefits** Demand volumes estimated (tons per annum) Supply volumes estimated (tons per annum) Demand Supply 31.200 26.250 27,250 6.500 31,200 27,250 26,250 2024 2025 2026 Target 6.500 In Flemish ports green hydrogen valley, we The focus is creating a supply of GH₂ near demand expect creation of 3000-4000 jobs on areas. Hence current outlay of supply matches demand 2024 2025 2026 Target installation of 200 MW of electrolyser No evidence for demand volumes seen currently The valley will also significantly contribute Supply sources for renewable energy Demand volumes estimated (tons per annum) towards reducing carbon-dioxide emissions as Onshore wind In Flemish H₂ ports valley, the government aims to bring ports are a concentrated zones of high Green H_2 closer to the point of consumption i.e., ports. carbon-di-oxide emissions Offshore wind Ports further act as landowners and sometimes investors for the projects, most of the project Ê Solar development is handled by both Government and private Currently, no evidence for benefit creation has players been seen for Flemish ports Supply sources for renewable energy Demand offtake for planned projects Refinery : Plug Power 100 MW at Port of Antwerp Existing potential for renewable energy across all 3 Multiple Use case :HyoffWind, DEME and PMV at ports including Solar, Onshore Wind and Offshore Port of Oostende Wind Mobility : Terranova NV, Plug Power 10 MW-


- Offshore Methanol : Power to Methanol & North-C-Methanol
- · Access to Europe's largest gas pipeline
- H₂ derivates bunkering facility in the ports

Note: Supply volume is based on size of H₂ production plants that have been planned in and around the three ports, Demand and Supply 235 Clean Hydrogen Partnership; North Sea Port; Port of Antwerp-Bruges; Port of Oostende; MEC+ analysis Source:

The valley will see a participation from various stakeholders

spread across government and private entities for investments, governance and project development

Types of stakeholders involved in creation of Green Hydrogen and Chemicals Oman Valley

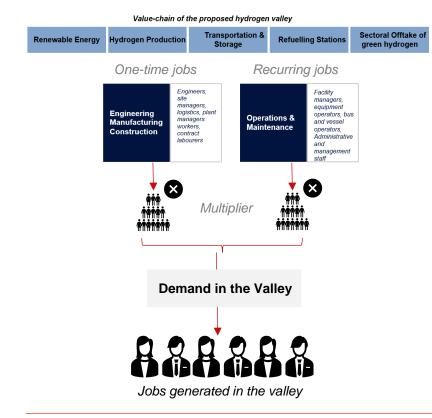
Copyright © January 2024

The following disclaimer governs the use of content provided by our management consulting organization. By accessing and utilizing our content, you agree to abide by the terms and conditions outlined below:

- Content for Informational Purposes Only: The information, articles, reports, and any other content provided by our organization are intended for general informational purposes only. They do not constitute professional advice, specific recommendations, or endorsements of any kind
- No Guarantees or Warranties: While we strive to provide accurate and up-to-date information, we make no guarantees or warranties of any kind, express or implied, regarding the completeness, accuracy, reliability, suitability, or availability of the content. The use of our content is at your own risk
- Professional Consultation: Our content does not replace the need for professional consultation or advice. It is essential to consult with qualified professionals or experts in specific fields before making any business, financial, legal, or other decisions based on the information provided in our content
- Third-Party Content and Links: Our content may contain links to third-party websites, articles, or resources. We do not endorse or have control over the content, accuracy, or reliability of such third-party sources. Accessing third-party content through our links is done at your own discretion and risk
- Personal Responsibility: You acknowledge that any actions you take based on our content are your own responsibility. We disclaim any liability for damages, losses, or any other consequences arising directly or indirectly from the use of our content.
- Changes and Updates: The information provided in our content may change or become outdated over time. We reserve the right to modify, update, or remove any content without prior notice. However, we do not commit to regularly updating the content.
- Acceptance of Terms: By accessing and using our content, you signify your acceptance of this content disclaimer. If you do not agree with any part of this disclaimer, please refrain from using our content.

Global H₂ Landscape and Valley Focus

Kochi Hydrogen Valley - Summary


Kochi Hydrogen Valley - Design Choices

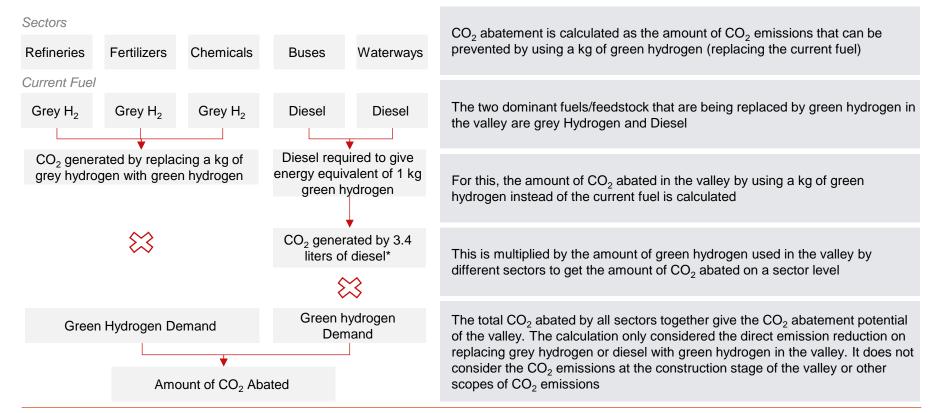
Kochi Hydrogen Valley - Background Information

Kochi Hydrogen Valley - Global Valley Profiles

Appendix

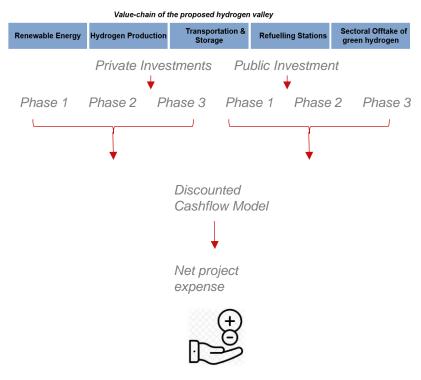
Methodology for jobs creation in the valley

The job creation potential of the valley is calculated as the sum of all jobs opportunities that the valley creates across the different value chain activities


The jobs generated in the valley are divided into one-time (construction/manufacturing/sector deep-dives) and recurring jobs (operations/maintenance/governance)

A unit multiplier is calculated for the different value chain activities based on a combination of existing literature, primary inputs from the industry, proxy industry metrices and logical assumptions

The unit multiplier was multiplied with the demand arising in the valley for the specific value chain activity to arrive at the number of jobs created


The jobs created are the number of people employed to carry-out the specified activity for a defined period and not the number of job years (FTEs) required to carry-out the activity. One-time jobs are expected to be for the duration of the construction/manufacturing activity spanning between 6 months to 2 years and O&M jobs are expected to be for the lifetime of the developed asset

Methodology for CO_2 abatement in the valley

240 Note: *3.4 litres of diesel equals energy from 1 kg of hydrogen Source: MEC+ analysis

Appendix *Methodology for value in the valley*

Value addition of the valley

Value in the valley is accounted for with the understanding that there is a net quantum of money that is being put into the valley, the value of that total investment after accounting for deprecation of infrastructure and operational costs over the lifetime of the valley is considered the value added

For the purpose, a discounted cash flow model is created, which is further divided into 2 distinct set of investments

- 1) Public (Government) Investment
- 2) Private Investment

The model considers input on interest rate on debt, split of debt-equity on the projects and the target IRR to find the rate of deprecation/ WACC (Weighted average cost of capital)

The model considers both the initial investment (Capex) and annual operating expenses (Opex). It discounts the total cash outflow and subtracts the cash inflow from selling the asset after the project's lifespan to total cash outflow to come to NPV of the project

241

Mapping of Industries in Kerala (I/VII)

S. No.	Company	Sector	Public/Private	Location	Website
1	AI Marine Products India Private Limited	Food Processing Units	Private	Alappuzha	NA
2	Protech Organo Foods Pvt Ltd	Food Processing Units	Private	Alappuzha	https://protechorgano.com/
3	Autokast Ltd	Metals	Public	Alappuzha	https://www.autokast.com/
4	Kerala State Drugs and Pharmaceuticals Ltd	Chemical Plant	Public	Alappuzha	https://ksdp.co.in/
5	Milma, Kerala Co-operative Milk Marketing Federation (KCMMF)	Food Processing Units	Public	Alappuzha	https://milma.com/
6	Excel Glasses Ltd.	Chemical Plant	Private	Alappuzha	http://www.excelglasses.com/
7	HIC-ABF Special Foods Pvt Ltd	Food Processing Units	Private	Alappuzha	https://hic-abf.com/
8	Moon Fishing India (P) Ltd., Aroor	Food Processing Units	Private	Alappuzha	NA
9	Cochin International Airport Limited (CIAL)	Aviation	Public-Private (PPP)	Ernakulam	https://www.cial.aero/
10	Hindustan Organic Chemicals Limited (HOCL)	Chemical Plant	Public	Ernakulam	https://www.hoclindia.com/
11	Phillips carbon black limited	Chemical Plant	Private	Ernakulam	https://www.pcblltd.com/
12	Sud Chemie India Pvt Ltd (formerly United Catalysts and Chemicals India Ltd)	Chemical Plant	Private	Ernakulam	https://www.sud-chemie-india.com/
13	The Travancore Cochin Chemicals Limited	Chemical Plant	Public	Ernakulam	https://www.tcckerala.com/
14	Hindalco Alupuram Works	Metals	Private	Ernakulam	https://www.hindalco.com/operations/al uminium-downstream/alupuram
15	Nitta Gelatin, formerly Kerala Chemicals & Proteins Ltd	Chemical Plant	Public-Private (PPP)	Ernakulam	https://www.gelatin.in/
16	Binani Zinc Ltd	Metals	Private	Ernakulam	https://www.binaniindustries.com/
17	Synthite	Food Processing Units	Private	Ernakulam	http://www.synthite.com/synthite.html
18	Plant Lipids	Food Processing Units	Private	Ernakulam	https://www.plantlipids.com/
19	A V Thomas And Co Ltd	Food Processing Units	Private	Ernakulam	http://www.avtgroup.in/
20	Periyar Chemicals Ltd	Chemical Plant	Private	Ernakulam	NA

242 Note: Non-exhaustive

Mapping of Industries in Kerala (II/VII)

1 THE FERTILISERS AND CHEMICALS TRAVANCORE LTD ferditiver Plant Public Enakulam https://www.fact.co.in/ 22 Bioingredin Natural Private Umined Food Processing Units Private Ernakulam https://www.fact.com/ 23 Cocobast Chocolute Factory PM Ld Food Processing Units Public Ernakulam https://www.fact.com/shou// 24 Vazhakulam Nadukkara Agro Processing Factory Food Processing Units Public Ernakulam https://www.fact.com/shou// 25 COCHN SHIPYARD Shipping Public Ernakulam https://www.fact.com/shou// 26 Barar Petroleum Corporation Limited Refinery Public Ernakulam https://www.knlart.com/shou// 27 Karala State Road Transport Corporation (KRTC) Read Mobility Public Ernakulam https://www.knlart.com/shou// 29 Mangala Marine Exim India Private Limited Food Processing Units Private Ernakulam https://www.acgo.com/aci// 31 Cochrin Genenis Food Processing Units Private Ernakulam https://www.acgo.com/aci// 32 Accelerated Free	S. No.	Company	Sector	Public/Private	Location	Website
23 Cacobean Chocolate Factory Pvt Ltd Food Processing Units Private Ernakulam https://www.cacbean.com/ 24 Vazhakulam Nadukkara Agro Processing Factory Food Processing Units Public Ernakulam https://www.cacbean.com/ 25 COCHIN SHIPYARD Shipping Public Ernakulam https://www.keralarc.com//abut// 26 Bharat Petroleum Coporation Limited Refinery Public Ernakulam https://www.keralarc.com//abut// 27 Kerals State Road Transport Corporation (KSRTC) Road Mobility Public Ernakulam https://www.keralarc.com//abut// 28 Urban Mass Transit Company Limited Food Processing Units Private Ernakulam https://www.keralarc.com//abut// 29 Mangala Marine Exim India Privata Limited Food Processing Units Private Ernakulam https://www.abut// 30 Accelerated Freeze Drying Company (AFDC Food Processing Units Private Ernakulam https://www.abut// 31 Cochin Gements Food Processing Units Private Ernakulam https://www.abut// 32 Akay Natural I	21	THE FERTILISERS AND CHEMICALS TRAVANCORE LTD	fertiliser Plant	Public	Ernakulam	https://www.fact.co.in/
24 Vazhakulam Nadukkara Ago Pocessing Factory Food Processing Units Public Ernakulam http://jwekarala.com/about/ 25 COCHIN SHIPYARD Shipping Public Ernakulam https://jwekarala.com/about/ 26 Bharat Petroleum Corporation Limited Refinery Public Ernakulam https://www.bharatpetroleum.in/ 27 Kerala State Road Transport Corporation (KSRTC) Road Mobility Public Ernakulam https://www.keralart.com/main.html 28 Urban Mass Transit Company Limited Road Mobility Public Ernakulam https://mangalagroup.in/ 29 Mangala Marine Exim India Private Limited Food Processing Units Private Ernakulam https://mangalagroup.in/ 30 Accelerated Freeza Drying Company Limited Food Processing Units Private Ernakulam https://www.keay-group.com/ 31 Cochrin Cernents Chemical Plant Private Ernakulam https://www.keay-group.com/ 32 Akay Natural Ingredients Private Limited Food Processing Units Private Ernakulam https://www.keie net/units/profSiCocf- 33	22	Bioingredia Natural Private Limited	Food Processing Units	Private	Ernakulam	http://www.bioingredia.com/
24Vazhakulam Nadukkara Agro Processing FactoryFood Processing UnitsPublicErnakulamInter/Jijvekarala.com/about/25COCHIN SHIPYARDShippingPublicErnakulamhttps://cochinshipyard.in/26Bharat Petroleum Corporation LimitedRefineryPublicErnakulamhttps://www.karalatc.com/main.html27Kerala State Road Transport Corporation (KSRTC)Road MobilityPublicErnakulamhttps://www.keralatc.com/main.html28Urban Mass Transit Company LimitedRoad MobilityPublicErnakulamhttps://mangalagroup.in/28Urban Mass Transit Company LimitedRoad MobilityPublicErnakulamhttps://mangalagroup.in/29Mangala Marine Exin India Private LimitedFood Processing UnitsPrivateErnakulamhttps://mangalagroup.in/30Accelerated Freeze Drying Company (AFDCFood Processing UnitsPrivateErnakulamhttps://www.kasay.group.com/31Cochin CerematsChemical PlantPrivateErnakulamhttps://www.clement.com/33Kerala State Industries Enterprises Ltd., (Cochin International Container Freight Station)AviationPublicErnakulamhttps://www.cochinpet/usin/priv/for Station.html34PETRONET CCK LIMITED- BPCL- TransportRoad MobilityPublicErnakulamhttps://www.cochinpet.gov.in/37HINDUSTAN UNILEVER LTDChemical PlantPrivateErnakulamhttps://www.cochinpet.gov.in/38COCHIN MINERALS & RUTILE LTDMetalsPrivateErnaku		Cacobean Chocolate Factory Pvt Ltd	Food Processing Units	Private	Ernakulam	https://www.cacobean.com/
26 Bharat Petroleum Corporation Limited Refinery Public Ernakulam https://www.karalartc.com/main.html 27 Kerala State Road Transport Corporation (KSRTC) Road Mobility Public Ernakulam https://www.karalartc.com/main.html 28 Urban Mass Transit Company Limited Road Mobility Public Ernakulam https://www.karalartc.com/main.html 29 Mangala Marine Exim India Private Limited Food Processing Units Private Ernakulam https://amalgamfoods.com/aldc/ 30 Accelerated Freeze Drying Company (AFDC Food Processing Units Private Ernakulam https://www.daratyccom/addc.com/aldc/ 31 Cochin Cements Chemical Plant Private Ernakulam https://www.daray-group.com/ 32 Akay Natural Ingredients Private Limited Food Processing Units Private Ernakulam https://www.akay-group.com/ 33 Kerala State Industrise Enterprises Ltd., (Cochin International Container Freight Station) Aviation Public Ernakulam https://www.baratpetroleum.in/pdf/or insticon.html 34 PETRONET CCK LIMITED BPCL- Transport Road Mobility Public <td< td=""><td></td><td>Vazhakulam Nadukkara Agro Processing Factory</td><td>Food Processing Units</td><td>Public</td><td>Ernakulam</td><td>http://jivekerala.com/about/</td></td<>		Vazhakulam Nadukkara Agro Processing Factory	Food Processing Units	Public	Ernakulam	http://jivekerala.com/about/
27Kerala State Road Transport Corporation (KSRTC)Road MobilityPublicEmakulamhttps://www.keralartc.com/main.html28Urban Mass Transit Company LimitedRoad MobilityPublicEmakulamhttps://www.untc.co.in/29Mangala Marine Exim India Private LimitedFood Processing UnitsPrivateEmakulamhttps://mangalagroup.in/30Accelerated Freeze Drying Company (AFDCFood Processing UnitsPrivateEmakulamhttps://mangalagroup.in/31Cochin CementsChemical PlantPrivateEmakulamhttps://www.uskay-group.com/32Akay Natural Ingredients Private LimitedFood Processing UnitsPrivateEmakulamhttps://www.ksia.net/Units/profS/Coch33Kerala State Industries Enterprises Ltd., (Cochin International Container Freight Station)AviationPublicEmakulamhttps://www.baratpetroleum.in/pdf/o Innarcial/petronetnew.pdf34PETRONET CCK LIMITED- BPCL- TransportRoad MobilityPublicEmakulamhttps://www.cochinport.gov.in/pt35Cochin Port Authority/ Port TrustShippingPublicEmakulamhttps://www.cochinport.gov.in/pt36Kochi Water MetroWater MetroWater MetroPrivateEmakulamhttps://www.chinp.co.in/38COCHIN MINERALS & RUTILE LTDMetaisPrivateEmakulamhttps://www.chind.co.in/39ZSNORDEN FASSADE PRIVATE LIMITEDMetaisPrivateEmakulamMttps://www.chind.co.in/39ZSNORDEN FASSADE PRIVATE LIMITEDMetaisPriva	25	COCHIN SHIPYARD	Shipping	Public	Ernakulam	https://cochinshipyard.in/
27Kerala State Road Transport Corporation (KSRTC)Road MobilityPublicErnakulamhttps://www.keralartc.com/main.html28Urban Mass Transit Company LimitedRoad MobilityPublicErnakulamhttps://www.umtc.co.in/29Mangala Marine Exim India Private LimitedFood Processing UnitsPrivateErnakulamhttps://mangalagorup.in/30Accelerated Freeze Drying Company (AFDCFood Processing UnitsPrivateErnakulamhttps://amalgamods.com/afdc/31Cochin CementsChemical PlantPrivateErnakulamhttps://www.colcement.com/32Akay Natural Ingredients Private LimitedFood Processing UnitsPrivateErnakulamhttps://www.ksie.net/units/pro/SrCoch- chemical/Plant33Kerala State Industries Enterprises Ltd (Cochin International Container Freight Station)AviationPublicErnakulamhttps://www.ksie.net/units/pro/SrCoch- chemicana/acontainer/Freight- Station.html34PETRONET CCK LIMITED- BPCL- TransportRoad MobilityPublicErnakulamhttps://www.cohinport.gov.in/cpt36Kochi Water MetroWater MobilityPublicErnakulamhttps://www.chinzot.gov.in/cpt37HINDUSTAN UNILEVER LTDChemical PlantPrivateErnakulamhttps://www.chinzot.gov.in/cpt38COCHIN MINERALS & RUTILE LTDMetalsPrivateErnakulamhttps://www.chinzot.gov.in/cpt392SNORDEN FASSADE PRIVATE LIMITEDMetalsPrivateErnakulamNA		Bharat Petroleum Corporation Limited	Refinery	Public	Ernakulam	https://www.bharatpetroleum.in/
29Margala Marine Exin India Private LimitedFood Processing UnitsPrivateErnakulamhttps://mangalagroup.in/30Accelerated Freeze Drying Company (AFDCFood Processing UnitsPrivateErnakulamhttps://amalgam0ods.com/atdc/31Cochin GementsChemical PlantPrivateErnakulamhttps://www.acleement.com/32Akay Natural Ingredents Private LimitedFood Processing UnitsPrivateErnakulamhttps://www.acleement.com/32Akay Natural Ingredents Private LimitedFood Processing UnitsPrivateErnakulamhttps://www.acleement.com/33Kerala State Industries Enterprises Ltd., (Cochin International Container Freight Station)AviationPublicErnakulamhttps://www.sisie.net/units/profs/CocdInternational/Container-Freight-Station.html34PETRONET CCK LIMITED BPCL- TransportRoad MobilityPublicErnakulamhttps://www.cochinport.gov.in/cpt36Kochi Water MetroWater MobilityVuater MobilityPublicErnakulamhttps://www.cochinport.gov.in/cpt37HINDUSTAN UNILEVER LTDMetalsPrivateErnakulamhttps://www.cochinport.gov.in/cpt38COCHIN MINERALS & RUTILE LTDMetalsPrivateErnakulamhttps://www.cochinport.gov.in/cpt3925NORDEN FASSADE PRIVATE LIMITEDMetalsPrivateErnakulamNA		Kerala State Road Transport Corporation (KSRTC)	Road Mobility	Public	Ernakulam	https://www.keralartc.com/main.html
30Accelerated Freeze Drying Company (AFDCFood Processing UnitsPrivateErnakulamhttps://amalgamio.dds.com/atdc/31Cochin CementsChemical PlantPrivateErnakulamhttps://www.cclcement.com/32Akay Natural Ingredients Private LimitedFood Processing UnitsPrivateErnakulamhttps://www.cclcement.com/33Kerala State Industries Enterprises Ltd., (Cochin International Container Freight Station)AviationPublicErnakulamhttps://www.baragetrolegit/station/ Station.https://www.baragetrolegit/station/ Station.https://www.baragetrolegit/station/ Station.https://www.baragetrolegit/station/ Station.https://www.baragetrolegit/station/ Station.https://www.baragetrolegit/station/ Station.https://www.baragetrolegit/station/ Station.https://www.baragetrolegit/station/ Station.https://www.cochingort.gov.in/cpt34PETRONET CCK LIMITED - BPCL- TransportRoad MobilityPublicErnakulamhttps://www.baragetrolegit/station/ Station.https://www.cochingort.gov.in/cpt35Cochin Port Authority/ Port TrustShippingPublicErnakulamhttps://www.cochingort.gov.in/cpt36Kochi Water MetroWater MobilityPublicErnakulamhttps://www.cochingort.gov.in/cpt37HINDUSTAN UNILEVER LTDChemical PlantPrivateErnakulamhttps://www.cmtindia.com/38COCHIN MINERALS & RUTILE LTDMetalsPrivateErnakulamhttps://www.cmtindia.com/392SNORDEN FASSADE PRIVATE LIMITEDMetalsPrivateErnakulamNA	28	Urban Mass Transit Company Limited	Road Mobility	Public	Ernakulam	https://www.umtc.co.in/
31 Cochin Cements Chemical Plant Private Ernakulam https://www.cclcement.com/ 32 Akay Natural Ingredients Private Limited Food Processing Units Private Ernakulam https://www.akay-group.com/ 33 Kerala State Industries Enterprises Ltd., (Cochin International Container Freight Station) Aviation Public Ernakulam https://www.ksie.net/Units/pro/S/Cochinter/Station/Stational-Container-Freight-Station 34 PETRONET CCK LIMITED - BPCL- Transport Road Mobility Public Ernakulam https://www.bharatpetroleum.in/pdf/or financial/petronetnew.pdf 35 Cochin Port Authority/ Port Trust Shipping Public Ernakulam https://www.cochinport.gov.in/cpt 36 Kochi Water Metro Water Mobility Public Ernakulam https://www.cochinport.gov.in/cpt 37 HINDUSTAN UNILEVER LTD Chemical Plant Private Ernakulam https://www.cochinport.gov.in/cpt 38 COCHIN MINERALS & RUTILE LTD Metals Private Ernakulam https://www.cmrlindia.com/ 39 2SNORDEN FASSADE PRIVATE LIMITED Metals Private Ernakulam NA		Mangala Marine Exim India Private Limited	Food Processing Units	Private	Ernakulam	https://mangalagroup.in/
32 Akay Natural Ingredients Private Limited Food Processing Units Private Ernakulam https://www.akay-group.com/ 33 Kerala State Industries Enterprises Ltd., (Cochin International Container Freight Station) Aviation Public Emakulam https://www.ksie.net/Units/pro/5/Cochi- Station.html 34 PETRONET CCK LIMITED BPCL- Transport Road Mobility Public Ernakulam https://www.baratpetroleum.in/pdf/o financial/petronetnew.pdf 35 Cochin Port Authority/ Port Trust Shipping Public Ernakulam https://www.cochinport.gov in/cpt 36 Kochi Water Metro Water Mobility Public Ernakulam https://www.hul.co.in/ 37 HINDUSTAN UNILEVER LTD Chemical Plant Private Ernakulam https://www.cmrlindia.com/ 38 COCHIN MINERALS & RUTILE LTD Metals Private Ernakulam https://www.cmrlindia.com/ 39 25NORDEN FASSADE PRIVATE LIMITED Metals Private Ernakulam NA	30	Accelerated Freeze Drying Company (AFDC	Food Processing Units	Private	Ernakulam	https://amalgamfoods.com/afdc/
33 Kerala State Industries Enterprises Ltd., (Cochin International Container Freight Station) Aviation Public Ernakulam https://www.ksie.net/units/pro/5/Coch- International-Container-Freight- Station.html 34 PETRONET CCK LIMITED BPCL- Transport Road Mobility Public Ernakulam https://www.bharatpetroleum.in/pdf/o financial/petronetnew.pdf 35 Cochin Port Authority/ Port Trust Shipping Public Ernakulam https://www.cochinport.gov.in/cpt 36 Kochi Water Metro Water Mobility Public Ernakulam https://www.cochinport.gov.in/cpt 37 HINDUSTAN UNILEVER LTD Chemical Plant Private Ernakulam https://www.cmr/lindia.com/ 38 COCHIN MINERALS & RUTILE LTD Metals Private Ernakulam https://www.cmr/lindia.com/ 39 2SNORDEN FASSADE PRIVATE LIMITED Metals Private Ernakulam NA	31	Cochin Cements	Chemical Plant	Private	Ernakulam	https://www.cclcement.com/
33Refails State Industries Enterprises Etd., (Cochin International Container Freight Station, htm]AviationPublicErnakulam-International-Container-Freight- Station, htm]34PETRONET CCK LIMITED BPCL- TransportRoad MobilityPublicErnakulamhttps://www.bharatpetroleum.in/pdf/o financial/petronetnew.pdf35Cochin Port Authority/ Port TrustShippingPublicErnakulamhttps://www.cochinport.gov.in/cpt36Kochi Water MetroWater MobilityPublicErnakulamhttps://www.cochinport.gov.in/cpt37HINDUSTAN UNILEVER LTDChemical PlantPrivateErnakulamhttps://www.cmrlindia.com/38COCHIN MINERALS & RUTILE LTDMetalsPrivateErnakulamhttps://www.cmrlindia.com/3925NORDEN FASSADE PRIVATE LIMITEDMetalsPrivateErnakulamNA	32	Akay Natural Ingredients Private Limited	Food Processing Units	Private	Ernakulam	, , , , , , , , , , , , , , , , , , , ,
34 PETRONET CCK LIMITED. BPCL- Transport Road Mobility Public Ernakulam financial/petronetnew.pdf 35 Cochin Port Authority/ Port Trust Shipping Public Ernakulam https://www.cochinport.gov.in/cpt 36 Kochi Water Metro Water Mobility Public Ernakulam https://www.cochinport.gov.in/cpt 37 HINDUSTAN UNILEVER LTD Chemical Plant Private Ernakulam https://www.com/india.com/ 38 COCHIN MINERALS & RUTILE LTD Metals Private Ernakulam NA	33		Aviation	Public	Ernakulam	-International-Container-Freight-
36 Kochi Water Metro Water Mobility Public Ernakulam https://watermetro.co.in/ 37 HINDUSTAN UNILEVER LTD Chemical Plant Private Ernakulam https://www.hul.co.in/ 38 COCHIN MINERALS & RUTILE LTD Metals Private Ernakulam https://www.cmrlindia.com/ 39 25NORDEN FASSADE PRIVATE LIMITED Metals Private Ernakulam NA	34	PETRONET CCK LIMITED BPCL- Transport	Road Mobility	Public	Ernakulam	https://www.bharatpetroleum.in/pdf/our financial/petronetnew.pdf
37 HINDUSTAN UNILEVER LTD Chemical Plant Private Ernakulam https://www.hul.co.in/ 38 COCHIN MINERALS & RUTILE LTD Metals Private Ernakulam https://www.cmrlindia.com/ 39 25NORDEN FASSADE PRIVATE LIMITED Metals Private Ernakulam NA	35	Cochin Port Authority/ Port Trust	Shipping	Public	Ernakulam	https://www.cochinport.gov.in/cpt
38 COCHIN MINERALS & RUTILE LTD Metals Private Ernakulam https://www.cmrlindia.com/ 39 25NORDEN FASSADE PRIVATE LIMITED Metals Private Ernakulam NA	36	Kochi Water Metro	Water Mobility	Public	Ernakulam	https://watermetro.co.in/
39 25NORDEN FASSADE PRIVATE LIMITED Metals Private Ernakulam NA	37	HINDUSTAN UNILEVER LTD	Chemical Plant	Private	Ernakulam	https://www.hul.co.in/
	38	COCHIN MINERALS & RUTILE LTD	Metals	Private	Ernakulam	https://www.cmrlindia.com/
		25NORDEN FASSADE PRIVATE LIMITED	Metals	Private	Ernakulam	NA
		AB MAURI INDIA Pvt Ltd, Cochin Spices	Food Processing Units	Private	Ernakulam	https://cochinspices.com/

243 Note: Non-exhaustive

Mapping of Industries in Kerala (III/VII)

S. No.	Company	Sector	Public/Private	Location	Website
41	ABAD EXIM PVT.LTD	Food Processing Units	Private	Ernakulam	https://abadfisheries.com/
42	AL Badr Seafoods private Limited	Food Processing Units	Private	Ernakulam	NA
43	Amazing Rubber Products Pvt Ltd	Chemical Plant	Private	Ernakulam	NA
44	Asma Rubber Products Pvt Ltd	Chemical Plant	Private	Ernakulam	http://asmaglove.com/
45	Carborundum Universal Ltd	Chemical Plant	Private	Ernakulam	https://www.cumi-murugappa.com/
46	CII GUARDIAN INTERNATIONAL LTD.	Metals	Private	Ernakulam	https://www.ciiguardian.net/
47	Crusader Chemical Co. Inc	Chemical Plant	Private	Ernakulam	https://www.crusaderchemical.com/
48	DELICIOUS CASHEW COMPANY	Food Processing Units	Private	Ernakulam	https://dccdelicious.com/
49	ELECTRONIC CONTROLS & DISCHARGE SYSTEMS PVT.LTD.(UNIT 2)	Metals	Private	Ernakulam	http://www.ecdsin.com/
50	ELECTRONIC CONTROLS AND DISCHARGE SYSTEMS PVT. LTD.	Metals	Private	Ernakulam	http://www.ecdsin.com/
51	ELECTRONIC CONTROLS AND DISCHARGE SYSTEMS PVT. LTD. (UNIT 3)	Metals	Private	Ernakulam	http://www.ecdsin.com/
52	GREENBAND FOODS (INDIA) PVT LTD	Food Processing Units	Private	Ernakulam	NA
53	HT FOODS PRIVATE LIMITED	Food Processing Units	Private	Ernakulam	https://www.htfoods.com/
54	Innovate Polimer Company	Metals	Private	Ernakulam	http://www.innovatepolimer.kochidigital marketing.com/
55	J J Perfumes International	Chemical Plant	Private	Ernakulam	NA
56	KAY SALIZAR	Chemical Plant	Private	Ernakulam	https://www.kaysalizar.com/
57	L.J.INTERNATIONAL LIMITED	Chemical Plant	Private	Ernakulam	NA
58	MOBIL AB GLUE WORLD	Chemical Plant	Private	Ernakulam	NA
59	NIKASU FROZEN FOOD PVT. LTD.	Food Processing Units	Private	Ernakulam	https://nikasu.com/
60	NIKASU PACK (P) LTD.	Food Processing Units	Private	Ernakulam	NA

244 Note: Non-exhaustive

Mapping of Industries in Kerala (IV/VII)

S. No.	Company	Sector	Public/Private	Location	Website
61	PRIMUS GLOVES PVT LIMITED	Chemical Plant	Private	Ernakulam	https://www.primusgloves.com/
62	ROYALMALABAR FOODS PVT LIMITED	Food Processing Units	Private	Ernakulam	http://nestroyaldelicacy.com/
63	SAFECARE RUBBER PRODUCTS PRIVATE LIMITED	Chemical Plant	Private	Ernakulam	NA
64	Safeshield India Rubber Products Pvt Ltd	Chemical Plant	Private	Ernakulam	https://www.safeshieldindia.com/
65	STABLE MAGNET WIRE PVT LTD	Metals	Private	Ernakulam	http://www.stablemagnet.com/
66	TAG Chemicals India Private Limited	Chemical Plant	Private	Ernakulam	https://www.tagchemicals.com/
67	TCL CERAMICS LIMITED	Chemical Plant	Private	Ernakulam	http://www.tclceramics.com/
68	Trex Tyres India Private Ltd.	Chemical Plant	Private	Ernakulam	NA
69	Unilever India Exports Ltd.	Chemical Plant	Private	Ernakulam	NA
70	INDIAN OIL CORPORATION LIMITED	Chemical Plant	Public	Ernakulam	https://iocl.com/
71	PETRONET ENERGY LIMITED	Chemical Plant	Public	Ernakulam	https://petronetIng.in/
72	INDIA GATEWAY TERMINAL PRIVATE LIMITED	Shipping	Public-Private (PPP)	Ernakulam	NA
73	Aspinwall and Company Limited (Stakeholder in Cochin Ports)	Shipping	Private	Ernakulam	https://www.aspinwall.in/
74	Poovath Paree & Sons	Shipping	Private	Ernakulam	NA
75	Kinship Services Pvt Ltd.	Shipping	Private	Ernakulam	http://www.kinshipping.com/
76	Kerala Shipping and Inland Navigation Corporation	Shipping	Public	Ernakulam	https://ksinc.in/
77	Meat Products of India Ltd (MPI)	Food Processing Units	Public	Ernakulam	https://www.meatproductsofindia.com/
78	Apollo Tyres	Chemical Plant	Private	Ernakulam	https://corporate.apollotyres.com/
79	HIL (INDIA) LIMITED (FORMERLY KNOWN AS HINDUSTAN INSECTICIDES LIMITED.)	Chemical Plant	Public	Ernakulam	https://www.hil.gov.in/Hindi/homepage. aspx
80	Cochin Petromins	Chemical Plant	Private	Ernakulam	https://cppl.co.in/

245 Note: Non-exhaustive

Mapping of Industries in Kerala (V/VII)

S. No.	Company	Sector	Public/Private	Location	Website
81	Indsil Group	Metals	Private	ldukki	https://www.indsil.com/
82	KERALA CLAYS AND CERAMIC PRODUCTS LIMITED (KCCPL)	Chemical Plant	Public	Kannur	https://kccpl.in/
83	Keltron Component Complex Ltd	Metals	Public	Kannur	http://www.keltroncomp.org/index.php
84	Rubco Compound Mixing Plant	Chemical Plant	Public	Kannur	https://www.rubcogroup.com/our- companies/rubco-rubber-compund- mixing-plant/
85	KERALA MINERALS & METALS LIMITED	Metals	Public	Kollam	https://www.kmml.com/
86	Kerala State Cashew Development Corporation Limited (KSCDC)	Food Processing Units	Public	Kollam	https://cashewcorporation.com/
87	Indian Rare Earths, Chavara Mines	Metals	Public	Kollam	https://www.irel.co.in/chavara-mineral- division#:~:text=The%20Chavara%20 mines%20contain%20as,variety%20h aving%2060%25%20TiO2%20IImenite
88	Kerala Ceramics Ltd., Kundara	Chemical Plant	Public	Kollam	http://www.keralaceramics.com/compa ny.htm
89	Kerala Premo Pipe Factory Limited	Chemical Plant	Private	Kollam	NA
90	The Kerala Agro Industries Corporation Limited	Food Processing Units	Public	Kollam	https://www.keralaagro.com/
91	Vijayalaxmi Cashew Company (VLC)	Food Processing Units	Private	Kollam	https://vlccashews.com/
92	Kerala Paper Products Limited (KPPL)	Chemical Plant	Public	Kottayam	http://www.keralapaper.in/
93	Travancore Cements Ltd	Chemical Plant	Public	Kottayam	https://www.travcement.com/
94	Canara Paper Mills Pvt Ltd	Chemical Plant	Private	Kottayam	http://www.canarapaper.com/
95	MRF Ltd. PB-2, Vadavathoor	Chemical Plant	Private	Kottayam	https://www.mrftyres.com/
96	SAIL-SCL Kerala Limited (SSKL)	Metals	Public	Kozhikode	https://www.steelcomplexkerala.com/
97	Peekay Steel	Metals	Private	Kozhikode	https://peekaysteels.com/
98	CRONUS STEEL DETAILING PRIVATE LIMITED	Metals	Private	Kozhikode	https://www.cronussteel.com/
99	Cocogreen Essentials Pvt Ltd	Food Processing Units	Private	Malappuram	NA
100	MALABARNATURAL FOODS PRIVATE LIMITED	Food Processing Units	Private	Malappuram	https://malabartreats.com/

246 Note: Non-exhaustive

Mapping of Industries in Kerala (VI/VII)

104Unipulp Agro IndustriesFood Processing UnitsPrivateMalappuramNA105Western Ghat Agricultural Products Processing Pvt LtdFood Processing UnitsPrivateMalappuramNA106KAAF LOGISTICS PRIVATE LIMITEDRoad MobilityPrivateMalappuramhttps://www.kaaflogistics.com/107Anthocyanin Naturals India Pvt LtdFood Processing UnitsPrivatePalakkadhttps://www.flavconaturals.com/108Flavco Natural Products Private LimitedFood Processing UnitsPrivatePalakkadhttps://grainngrace.co/109Grain N Grace Food Ingredient Manufacturing Pvt. LtdFood Processing UnitsPrivatePalakkadhttps://grainngrace.co/	S. No.	Company	Sector	Public/Private	Location	Website
102SHAZZ CURRY PASTE PVT LTDFood Processing UnitsPrivateMalappuramNA103Ubergreen Organic Pvt LtdFood Processing UnitsPrivateMalappuramNA104Uripule Agro IndustriesFood Processing UnitsPrivateMalappuramNA105Westem Shat Agricultural Products Processing PvLIdFood Processing UnitsPrivateMalappuramNA106KAPE LOGISTICS PRIVATE LIMITEDRoad MobilityPrivateMalappuramNA107Anthocgranin Naturals India PVLLdFood Processing UnitsPrivatePalakkadhttps://www.stalogistics.com/108Flavor Maturals India PVLLdFood Processing UnitsPrivatePalakkadhttps://www.flavocnaturals.com/109Grain N Grace Food Ingredient Manufacturing PVL LtdFood Processing UnitsPrivatePalakkadhttps://www.flavocnaturals.com/110Lawen Essential Private LimitedFood Processing UnitsPrivatePalakkadhttps://www.flavocnaturals.com/111Mask Natural Extractors PvL LtdFood Processing UnitsPrivatePalakkadhttps://www.makneturals.com/112Surabhi Steels (P) LtdMetalsPrivatePrivatePalakkadhttps://www.makneturals.com/113SMM Steel Re-Rolling MillsMetalsPrivatePrivatePalakkadhttp://www.makneturals.com/114Palakcy Cements LtdCementa LtdCementa LtdPrivatePalakkadhttp://www.makneturals.com/115Malabar Cements LtdCementa Ltd <td></td> <td>MEBRAN SPICES PRIVATE LIMITED</td> <td>Food Processing Units</td> <td>Private</td> <td>Malappuram</td> <td>NA</td>		MEBRAN SPICES PRIVATE LIMITED	Food Processing Units	Private	Malappuram	NA
104Unipulp Agro IndustriesFood Processing UnitsPrivateMalappuramNA105Westen Ghat Agricultural Products Processing Pvt LtdFood Processing UnitsPrivateMalappuramNA106KAAF LOGISTICS PRIVATE LIMITEDRoad MobilityPrivateMalappuramNA107Anthocyanin Naturals India Pvt LtdFood Processing UnitsPrivatePalakkadhttps://www.kastlogistics.com/108Flavco Natural Products Private LimitedFood Processing UnitsPrivatePalakkadhttps://www.flavconsturals.com/108Flavco Natural Products Private LimitedFood Processing UnitsPrivatePalakkadhttps://www.flavconsturals.com/109Grain N Grace Food Ingredent Manufacturing Pvt. LtdFood Processing UnitsPrivatePalakkadhttps://www.flavconsturals.com/110Leaven Essentials Private LimitedFood Processing UnitsPrivatePalakkadhttps://www.flavconsturals.com/111Maak Natural Extractors Pvt. LtdFood Processing UnitsPrivatePalakkadhttps://www.maaknaturals.com/112Surabh Steels (P) LtdMetalsPrivatePalakkadNA114Paragon Steels (P) LtdMetalsPrivatePalakkadNA115Malabar Cements LtdChemical PlantPublicPalakkadNA116Utility Alloys (P) LtdMetalsPrivatePalakkadNA117Agri SteelsMetalsPrivatePalakkadNA		SHAZZ CURRY PASTE PVT LTD	Food Processing Units	Private	Malappuram	NA
104Unjqu/g Agio IndustriesFood Processing UnitsPrivateMalappuramNA105Westem Ghat Agricultural Products Processing Pvt LtdFood Processing UnitsPrivateMalappuramNA106KAAF LOGISTICS PRIVATE LIMITEDRoad MobilityPrivateMalappuramMalappuramhttps://www.kaaflogistics.com/107Anthocyanin Naturals India Pvt LtdFood Processing UnitsPrivatePalakkadhttps://www.favconsturat.com/108Flavco Natural Products Private LimitedFood Processing UnitsPrivatePalakkadhttps://www.favconsturat.com/108Caren Essentials Private LimitedFood Processing UnitsPrivatePalakkadhttps://www.favconsturat.com/110Leaven Essentials Private LimitedFood Processing UnitsPrivatePalakkadhttps://www.maknaturals.com/111Maak Natural Extractors Pvt. LtdFood Processing UnitsPrivatePalakkadNA112Surabh Steels (P) Ltd.MetalsPrivatePalakkadNA113SMM Steel Re-Rolling MilisMetalsPrivatePalakkadNA114Malaper Cements LtdChemical PlantPuloicPalakkadNa115Malaper Cements LtdChemical PlantPrivatePalakkadNa116Malaper Steels (P) LtdMetaisPrivatePalakkadNa117Agio Steels (P) LtdMetaisPrivatePalakkadNa118Malaper Cements LtdMetaisPrivatePalakkadNa	103	Ubergreen Organic Pvt Ltd	Food Processing Units	Private	Malappuram	NA
Interview KAAF LOGISTICS PRIVATE LIMITED Road Mobility Private Malappuran https://www.kadlogistics.com/ 107 Anthocyanin Naturals India Pv1 Ltd Food Processing Units Private Palakkad https://www.anthocyanin.in/ 108 Flavco Natural Products Private Limited Food Processing Units Private Palakkad https://www.flavconaturals.com/ 109 Grain N Grace Food Ingredient Manufacturing Pv1. Ltd Food Processing Units Private Palakkad https://www.flavconaturals.com/ 110 Leaven Essentials Private Limited Food Processing Units Private Palakkad https://www.maaknaturals.com/ 111 Maka Natural Extractors Pv1. Ltd Food Processing Units Private Palakkad https://www.maaknaturals.com/ 112 Surabi Steels (P) Ltd. Metals Private Palakkad NA 113 SMM Steel Re-Rolling Mills Metals Private Palakkad http://www.paragonsteels.in/ 114 Paragon Steels (P) Ltd Metals Private Palakkad NA 115 Malabar Cements Ltd Metals		Unipulp Agro Industries	Food Processing Units	Private	Malappuram	NA
107Anthocyanin Naturals India Pvt LtdFood Processing UnitsPrivatePalakkadhttps://www.natocyanin.in/108Flavco Natural Products Private LimitedFood Processing UnitsPrivatePalakkadhttps://www.flavconaturals.com/109Grain N Grace Food Ingredient Manufacturing Pvt. LtdFood Processing UnitsPrivatePalakkadhttps://grainngrace.co/110Leaven Essentials Private LimitedFood Processing UnitsPrivatePalakkadhttps://leavenessentials.com/111Maka Natural Extractors Pvt. LtdFood Processing UnitsPrivatePalakkadhttps://www.maaknaturals.com/112Surabi Steels (P) Ltd.MetalsPrivatePalakkadNA113SMM Steel Re-Rolling MillsMetalsPrivatePalakkadNA114Paragon Steels (P) LtdChemical PlantPublicPalakkadNA115Malabar Cements LtdMetalsPrivatePalakkadNA116Utilty Alloys (P) LtdMetalsPrivatePalakkadNA117Agni SteelsMetalsPrivatePalakkadNA118Privea ILudMetalsPrivatePalakkadNA119Prive Industries LtdFood Processing UnitsPrivatePalakkadNA119Prive Industries LtdFood Processing UnitsPrivatePalakkadNA119Prive Industries LtdFood Processing UnitsPrivatePalakkadNA118Prive Industries LtdFood Processing U	105	Western Ghat Agricultural Products Processing Pvt Ltd	Food Processing Units	Private	Malappuram	NA
108Flavo Natural Products Private LimitedFood Processing UnitsPrivatePalakkadhttps://www.flavonaturals.com/109Grain N Grace Food Ingredient Manufacturing Pvt. LtdFood Processing UnitsPrivatePalakkadhttps://graingrace.co/110Leaven Essentials Private LimitedFood Processing UnitsPrivatePalakkadhttps://www.maaknaturals.com/111Maak Natural Extractors Pvt. LtdFood Processing UnitsPrivatePalakkadhttps://www.maaknaturals.com/112Surabhi Steels (P) Ltd.MetalsPrivatePalakkadNA113SMM Steel Re-Rolling MillsMetalsPrivatePalakkadNA114Paragon Steels (P) LtdMetalsPrivatePalakkadhttps://www.paragonsteels.in/115Malabar Cements LtdChemical PlantPublicPalakkadNA116Utiliy Alloys (P) LtdMetalsPrivatePalakkadNA117Agni SteelsMetalsPrivatePalakkadNA118Prince Alloys Private LimitedMetalsPrivatePalakkadNA119Prime Industries LtdFood Processing UnitsPrivatePalakkadhttps://www.parginitedistrieslimited.com	106	KAAF LOGISTICS PRIVATE LIMITED	Road Mobility	Private	Malappuram	https://www.kaaflogistics.com/
108Flavo Natural Products Private LimitedFood Processing UnitsPrivatePalakkadhttps://www.flavonaturals.com/109Grain N Grace Food Ingredient Manufacturing Pvt. LtdFood Processing UnitsPrivatePalakkadhttps://grain.grace.co/110Leaven Essentials Private LimitedFood Processing UnitsPrivatePalakkadhttps://www.maaknaturals.com/111Maak Natural Extractors Pvt. LtdFood Processing UnitsPrivatePalakkadhttps://www.maaknaturals.com/112Surabhi Steels (P) Ltd.MetalsPrivatePalakkadNA113SMM Steel Re-Rolling MillsMetalsPrivatePalakkadNA114Paragon Steels (P) Ltd.MetalsPrivatePalakkadhttps://www.maaknatcements.co.in/en/115Malabar Cements LtdChemical PlantPublicPalakkadNA116Utility Alloys (P) LtdMetalsPrivatePalakkadNA117Agni SteelsMetalsPrivatePalakkadNA118Prince Alloys Private LimitedMetalsPrivatePalakkadNA119Prine Industries LtdFood Processing UnitsPrivatePalakkadNA119Prine Industries LtdFood Processing UnitsPrivatePalakkadhttps://www.pimeindustrieslimited.com				Private	Palakkad	
110Leaven Essentials Private LimitedFood Processing UnitsPrivatePalakkadhttps://eavenessentials.com/111Maak Natural Extractors Pvt. LtdFood Processing UnitsPrivatePalakkadhttps://www.maaknaturals.com/112Surabhi Steels (P) Ltd.MetalsPrivatePalakkadNA113SMM Steel Re-Rolling MillsMetalsPrivatePalakkadNA114Paragon Steels (P) LtdMetalsPrivatePalakkadNttp://www.paragonsteels.in/115Malabar Cements LtdChemical PlantPublicPalakkadhttp://www.malabarcements.co.in/en/116Utility Alloys (P) LtdMetalsPrivatePalakkadNA117Agni SteelsMetalsPrivatePalakkadNA118Prince Alloys Private LimitedMetalsPrivatePalakkadNA119Prime Industries LtdFood Processing UnitsPrivatePalakkadNA				Private	Palakkad	
110Leaven Essentials Private LimitedFood Processing UnitsPrivatePalakkadhttps://www.maknaturals.com/111Maak Natural Extractors Pvt. LtdFood Processing UnitsPrivatePalakkadhttps://www.maknaturals.com/112Surabhi Steels (P) Ltd.MetalsPrivatePalakkadNA113SMM Steel Re-Rolling MillsMetalsPrivatePalakkadNA114Paragon Steels (P) LtdMetalsPrivatePalakkadNA115Malabar Cements LtdChemical PlantPublicPalakkadhttps://www.malabarcements.co.in/en/116Utility Alloys (P) LtdMetalsPrivatePrivatePalakkadNA117Agni SteelsMetalsPrivatePalakkadNA118Prince Alloys Private LimitedMetalsPrivatePalakkadNA119Prime Industries LtdFood Processing UnitsPrivatePalakkadNA	109		Food Processing Units	Private	Palakkad	https://grainngrace.co/
112 Surabhi Steels (P) Ltd. Metals Private Palakkad NA 113 SMM Steel Re-Rolling Mills Metals Private Palakkad NA 114 Paragon Steels (P) Ltd Metals Private Palakkad http://www.paragonsteels.in/ 115 Malabar Cements Ltd Chemical Plant Public Palakkad https://www.malabarcements.co.in/en/ 116 Utility Alloys (P) Ltd Metals Private Palakkad NA 117 Agni Steels Metals Private Palakkad NA 118 Prince Alloys Private Limited Metals Private Palakkad NA 119 Prime Industries Ltd Food Processing Units Private Palakkad https://www.primeindustrieslimited.com //			Food Processing Units	Private	Palakkad	https://leavenessentials.com/
113SMM Steel Re-Rolling MillsMetalsPrivatePalakkadNA114Paragon Steels (P) LtdMetalsPrivatePalakkadhttp://www.paragonsteels.in/115Malabar Cements LtdChemical PlantPublicPalakkadhttps://www.malabarcements.co.in/en/116Utility Alloys (P) LtdMetalsPrivatePalakkadNA117Agni SteelsMetalsPrivatePalakkadNA118Prince Alloys Private LimitedMetalsPrivatePalakkadNA119Prime Industries LtdFood Processing UnitsPrivatePalakkadhttps://www.primeindustrieslimited.com	111	Maak Natural Extractors Pvt. Ltd	Food Processing Units	Private	Palakkad	https://www.maaknaturals.com/
114 Paragon Steels (P) Ltd Metals Private Palakkad http://www.paragonsteels.in/ 115 Malabar Cements Ltd Chemical Plant Public Palakkad https://www.malabarcements.co.in/en/ 116 Utility Alloys (P) Ltd Metals Private Palakkad NA 117 Agni Steels Metals Private Palakkad https://www.agnisteels.com/ 118 Prince Alloys Private Limited Metals Private Palakkad NA 119 Prime Industries Ltd Food Processing Units Private Palakkad https://www.primeindustrieslimited.com /	112	Surabhi Steels (P) Ltd.	Metals	Private	Palakkad	NA
115Malabar Cements LtdChemical PlantPublicPalakkadhttps://www.malabarcements.co.in/en/116Utility Alloys (P) LtdMetalsPrivatePalakkadNA117Agni SteelsMetalsPrivatePalakkadhttps://www.agnisteels.com/118Prince Alloys Private LimitedMetalsPrivatePalakkadNA119Prime Industries LtdFood Processing UnitsPrivatePalakkadhttps://www.primeindustrieslimited.com	113	SMM Steel Re-Rolling Mills	Metals	Private	Palakkad	NA
116Utility Alloys (P) LtdMetalsPrivatePalakkadNA117Agni SteelsMetalsPrivatePalakkadhttps://www.agnisteels.com/118Prince Alloys Private LimitedMetalsPrivatePalakkadNA119Prime Industries LtdFood Processing UnitsPrivatePalakkadhttps://www.primeindustrieslimited.com	114	Paragon Steels (P) Ltd	Metals	Private	Palakkad	http://www.paragonsteels.in/
116Utility Alloys (P) LtdMetalsPrivatePalakkadNA117Agni SteelsMetalsPrivatePalakkadhttps://www.agnisteels.com/118Prince Alloys Private LimitedMetalsPrivatePalakkadNA119Prime Industries LtdFood Processing UnitsPrivatePrivatePalakkadhttps://www.primeindustriesIlimited.com		Malabar Cements Ltd	Chemical Plant	Public	Palakkad	https://www.malabarcements.co.in/en/
118 Prince Alloys Private Limited Metals Private Palakkad NA 119 Prime Industries Ltd Food Processing Units Private Palakkad https://www.primeindustrieslimited.com		Utility Alloys (P) Ltd	Metals	Private	Palakkad	NA
119 Prime Industries Ltd Food Processing Units Private Palakkad https://www.primeindustrieslimited.com	117	Agni Steels	Metals	Private	Palakkad	https://www.agnisteels.com/
119 Prime Industries Ltd Food Processing Units Private Palakkad	118	Prince Alloys Private Limited	Metals	Private	Palakkad	NA
120 Sueera Alloys (P) Ltd. Metals Private Palakkad https://www.sueeraaglobal.com/	119	Prime Industries Ltd	Food Processing Units	Private	Palakkad	https://www.primeindustrieslimited.com /
	120	Sueera Alloys (P) Ltd.	Metals	Private	Palakkad	https://www.sueeraaglobal.com/

247 Note: Non-exhaustive

Mapping of Industries in Kerala (VII/VII)

S. No.	Company	Sector	Public/Private	Location	Website
121	Southern Ispat Ltd.	Metals	Private	Palakkad	NA
122	SVA Steel Re-rolling Mills Ltd.	Metals	Private	Palakkad	NA
123	A.P.Steel Re-Rolling Mill Ltd.	Metals	Private	Palakkad	NA
124	TRAVANCORE TITANIUM PRODUCTS LIMITED	Metals	Public	Thiruvananthapuram	https://travancoretitanium.com/
125	Kerala Automobiles Limited (KAL)	Road Mobility	Public	Thiruvananthapuram	https://kal.org.in/
126	English Indian Clays Ltd	Chemical Plant	Public	Thiruvananthapuram	https://eicl.in/
127	Nilamels & Kaimals Foods Private Limited	Food Processing Units	Private	Thiruvananthapuram	https://www.nilamel.com/
128	Kerala State Industries Enterprises Ltd., (Air Cargo Complex)	Aviation	Public	Thiruvananthapuram	http://www.ksie.net/
129	Kerala State Salicylates & Chemicals Itd.,	Chemical Plant	Public	Thiruvananthapuram	NA
130	Pure Petrochem India Private Ltd	Chemical Plant	Private	Thiruvananthapuram	https://www.purepetrochem.com/
131	Southern Refineries Ltd.	Chemical Plant	Private	Thiruvananthapuram	NA
132	Thiruvananthapuram Airport (Owned by Airport Authority of India, Run by Adani Group)	Aviation	Public-Private (PPP)	Thiruvananthapuram	https://www.trivandrumairport.com/
133	KSE Limited	Chemical Plant	Private	Thrissur	https://www.kselimited.com/
134	KERALA FEEDS LIMITED	Chemical Plant	Public	Thrissur	https://www.keralafeeds.com/
135	Steel & Industrial Forgings Limited(SIFL)	Metals	Public	Thrissur	https://www.siflindia.com/
136	Perfetto Naturals Pvt. Ltd.	Food Processing Units	Private	Wayanad	https://www.perfettonaturals.com/
137	Kottayam Port and Container Terminal	Port	PPP	Kottayam	https://www.kottayamport.com/
138	Kerala State Water Transport Department	Water Mobility	Public	Alappuzha	https://www.swtd.kerala.gov.in/pages- en-IN/index.php
139	Houseboat Owners Association	Water Mobility	Private	Alappuzha	https://www.keralahouseboatowners.c om/

248 Note: Non-exhaustive

Envisioned and Potential (Representative) Offtakers for the Kochi Green Hydrogen Valley

Company	Sector	Public/Private	Location	Offtake
Bharat Petroleum Corporation Limited	Refinery	Public	Ernakulam	Envisioned Offtake – Refinery
The Fertilizers and Chemicals Travancore Limited	fertiliser Plant	Public	Ernakulam	Envisioned Offtake – fertiliser
Hindustan Organic Chemicals Limited (HOCL)	Chemical Plant	Public	Ernakulam	Envisioned Offtake – Chemicals
Kerala State Road Transport Corporation (KSRTC)	Road Mobility	Public	Ernakulam	Envisioned Offtake – Road Transport
Kochi Water Metro	Water Mobility	Public	Ernakulam	Envisioned Offtake – Water Transport
Kerala Shipping and Inland Navigation Corporation	Shipping	Public	Ernakulam	Envisioned Offtake – Water based Cargo
Kottayam Port and Container Terminal	Port	PPP	Kottayam	Potential Representative – Ports (Own Cargo Movement)
Kerala State Water Transport Department	Water Mobility	Public	Alappuzha	Potential Representative - Water Transport
Kerala Minerals and Metals Limited	Metals	Public	Kollam	Potential Representative – Industrial use and goods transport
Houseboat Owners Association	Water Mobility	Private	Alappuzha	Potential Representative - Houseboats
Vizhinjam International Seaport Limited	Port	PPP	Thiruvananthapuram	Potential Representative - Bunkering
Cochin Shipyard Limited	Shipping	Public	Ernakulam	Potential Representative - Heavy Equipment
Cochin Port Authority/ Port Trust	Shipping	Public	Ernakulam	Potential Representative - Port Equipment
Cochin International Airport Limited (CIAL)	Aviation	Public-Private (PPP)	Ernakulam	Potential Representative - Port Equipment
Thiruvananthapuram Airport	Aviation	Public-Private (PPP)	Thiruvananthapuram	Potential Representative - Port Equipment
SAIL-SCL Kerala Limited (SSKL)	Metals	Public	Kozhikode	Potential Representative - Metals
Paragon Steels (P) Ltd	Metals	Private	Palakkad	Potential Representative - Metals
AG&P	Gas Distribution	Private	Thiruvananthapuram	Potential Representative - Gas Blending

249 Note: Non-exhaustive; potential off takers are representatives of a sector with offtake potential Source: Company Websites; MEC+ analysis

Appendix Data Sheets | Infrastructure Costs

S. No.	Component	Year	Cost	Units	Sources
1	Electrolyser Cost	2025	200000	INR/kW	Discussion with developers & investors
2	Electrolyser Cost	2030	80955	INR/kW	Discussion with developers & investors
3	Electrolyser Cost	2040	25240	INR/kW	Discussion with developers & investors
4	Solar Capex Cost	2025	36100000	INR/MW	Discussion with developers and investors
5	Solar Capex Cost	2030	32648193	INR/MW	Discussion with developers and investors
6	Solar Capex Cost	2040	26703183	INR/MW	Discussion with developers and investors
7	Wind Capex Cost	2025	84328000	INR/MW	Discussion with developers and investors
8	Wind Capex Cost	2030	74481849	INR/MW	Discussion with developers and investors
9	Wind Capex Cost	2040	63774750	INR/MW	Discussion with developers and investors
10	H ₂ refuelling Station Cost	2025	9600000	INR	CE Delft, NREL
11	Battery Capex	2025	94300000	INR/MW	Discussion with developer and investors
12	Pumped Hydro Storage Capex	2025	41300000	INR/MW	Discussion with developer and investors
13	H ₂ refuelling Station Cost	2030	53100000	INR	CE Delft, NREL
14	H ₂ refuelling Station Cost	2040	46963407	INR	CE Delft, NREL
15	H ₂ Storage Cost	2025	41329	INR/Kg H ₂	RMI, CEEW
16	Transmission Infrastructure Cost	2025	56000000	INR	DHBVN
17	Transmission Infrastructure Cost	2040	239000000	INR	DHBVN, CEA, PSERC

250 Note: *HB: Haber-Bosch Source: MEC+ analysis

Data Sheets | Infrastructure Costs II/II

S. No.	Component	Year	Cost	Units	Sources
18	Ammonia Synthesis Unit Cost	2025	44000	INR/ton NH ₃	Fashi et al-2021
19	Ammonia ASU Unit Cost	2025	4400	INR/ton NH ₃	IRENA. Fashi et al-2021
20	Ammonia Storage Unit Cost	2025	54824	INR/ton NH ₃	Fashi et al-2021
21	H ₂ FCEV Bus Cost	2025	2000000	INR	Ashok Leyland number assumed at 0 profit margin
22	H ₂ FCEV Bus Cost	2030	17142857	INR	Ashok Leyland number assumed at 0 profit margin
23	H ₂ FCEV Bus Cost	2040	14285714	INR	Ashok Leyland number assumed at 0 profit margin
24	H ₂ ICE Bus Cost	2025	800000	INR	Primary, Government of Kerala
25	H ₂ ICE Bus Cost	2030	6857142	INR	Primary, Government of Kerala
26	H ₂ ICE Bus Cost	2040	5714285	INR	Primary, Government of Kerala
27	HFCEV Boat Cost	2025	20000000	INR	Primary
28	HFCEV Boat Cost	2030	18000000	INR	Primary
29	HFCEV Boat Cost	2040	162000000	INR	Primary
30	Water Cost	2025	60	INR/KL	Kerala Government
31	H ₂ Pipeline Cost	2025	163282500	INR/Km	European Hydrogen Backbone
32	NH ₃ Pipeline Cost	2025	68560000	INR/Km	University of Twente, IEA
33	Land Cost	2025	3900000	INR/Acre	VOC Port, Government of Tamil Nadu

251 Note: *HB: Haber-Bosch Source: MEC+ analysis

Appendix Data Sheets | Land requirement

S. No.	Component	Phase	Land Requirement	Units	Costs	Units
1	Electrolyser Plant	Phase-2	1.2	Acre	0.482	INR/Crore
2	Electrolyser Plant	Phase-3	21	Acre	8.19	INR/Crore
3	Renewable Ammonia Plant	Phase-3	148	Acre	57.72	INR/Crore
4	H ₂ refuelling Station	Phase-1	0.3	Acre	0.117	INR/Crore
5	H ₂ refuelling Station	Phase-2	0.3	Acre	0.117	INR/Crore
6	H ₂ Storage	Phase-2	0.05	Acre	0.019	INR/Crore
7	H ₂ Storage	Phase-3	0.82	Acre	0.32	INR/Crore
8	H ₂ Pipeline	Phase-2	1.7	Acre	0.668	INR/Crore
9	NH ₃ Pipeline	Phase-3	1.9	Acre	0.759	INR/Crore

252 Note: If a certain phase is not mentioned for the component, it is assumed for that phase no new land is required, all the land required at each phase are additional Source: MEC+ analysis

Technology Readiness Level (TRL) Definitions

TRL Level	Level Name	Definition
TRL 1	Basic Research	Initial scientific research is conducted. Principles are qualitatively postulated and observed. Focus is on new discovery rather than applications. Examples include studies on basic material properties
TRL 2	Applied Research	Initial practical applications are identified. Potential of material or process to solve a problem, satisfy a need, or find application is confirmed
TRL 3	Critical Function or Proof of Concept Established	Applied research advances and early-stage development begins. Includes studies and initial laboratory measurements to validate analytical predictions of separate elements of the technology. Examples include research on materials, components, or processes that are not yet integrated
TRL 4	Lab Testing/Validation of Alpha Prototype Component/Process	Design, development and lab testing of components/processes. Results provide evidence that performance targets may be attainable based on projected or modeled systems.
TRL 5	Laboratory Testing of Integrated/Semi-Integrated System	System Component and/or process validation is achieved in a relevant environment (beta prototype component level)
TRL 6	Prototype System Verified	System/process prototype demonstration in an operational environment (beta prototype system level)
TRL 7	Integrated Pilot System Demonstrated:	System/process prototype demonstration in an operational environment (integrated pilot system level)
TRL 8	System Incorporated in Commercial Design	Actual system/process completed and qualified through test and demonstration (pre-commercial demonstration)
TRL 9	System Proven and Ready for Full Commercial Deployment	Actual system proven through successful operations in operating environment, and ready for full commercial deployment

Primary Interview Summaries (I/XIII)

FACT | Stakeholder Interview Responses

Decarbonisation goals	 Decarbonisation activities at FACT revolve around RE adoption. Currently RE adoption at FACT is progressing at a slow pace - we have installed 10kW rooftop solar. FACT has its own reservoir and plans on setting up 6 MW of floating solar. 	Weak	Strong
Hydrogen use case	• FACT has a direct use case for hydrogen, hydrogen is also used in the chemicals division. We need to understand the technology changes in the ammonia plant and interact with technology providers who can integrate green hydrogen into current plant in a step-by-step manner	Weak	Strong
Green H ₂ adoption plans	 Currently we have not defined any plans for green hydrogen adoption. In current scenario, at best can try to stop importing ammonia as per the plans of the government 	Weak	Strong
Green H₂ tech confidence	 We need to receive and evaluate proposals containing the technical details and the price of green NH₃ to evaluate the option of green ammonia. Smaller capacity plants could be very expensive. Need to interact with technology providers. 	Weak	Strong
First offtake timelines	 We see the move to green NH₃ in three stages, first stage would be to develop RE power (6 MW floating solar plans and could go up to 8 or 9 MW RE power). Second, to produce green hydrogen and third step would be green ammonia. Currently there are no timelines set. 	Weak	Strong
Other Comments	 We have expertise in the operations of ammonia plant but have no technical expertise need to understand whether green hydrogen can be input into current plant in a step-by changes required for using green hydrogen and the price levels of green NH₃ 		•

Primary Interview Summaries (II/XIII)

BPCL | Stakeholder Interview Responses*

Decarbonisatio n goals	BPCL has a net-zero emissions target by 2040
Hydrogen use case	 BPCL has a direct hydrogen use-case. H₂ is currently produced at a facility located at the Kochi refinery and is operated by Air Products. H₂ is also available as process by-product
Green H ₂ adoption plans	 BPCL is currently undertaking green hydrogen production pilot at the BPCL Bina refinery and further plans would depend on the success of the pilot
Green H ₂ tech confidence	Not discussed
First offtake timelines	Not discussed
Other Comments	Not discussed

255 Note: *Interactions with BPCL representatives limited to conversations during the stakeholder meetings held in Kochi Source: Primary Interviews; MEC+ analysis

Primary Interview Summaries (III/XIII)

HOCL | Stakeholder Interview Responses

Decarbonisatio n goals	• We currently do not have any specific goals for decarbonisation or any mandates from the government for decarbonisation or use of green hydrogen	Weak	Strong
Hydrogen use case	 HOCL has a direct use case for hydrogen. We currently source our hydrogen from BPCL through pipelines and use it to produce hydrogen peroxide 	Weak	Strong
Green H ₂ adoption plans	 We do not have any plans to switch to green hydrogen. Our use case compared to others (refineries and fertilizers) are very small and we also have a stable contract with BPCL currently to meet our hydrogen demand 	Weak	Strong
Green H ₂ tech confidence	 Substitution of grey hydrogen with green hydrogen would not pose a challenge but the availability of green hydrogen at a competitive price would hinder the confidence to uptake green hydrogen as HOCL faces competitive pressure from other H₂ peroxide manufacturers 	Weak	Strong
First offtake timelines	 We don't have plans to offtake green hydrogen, but we will follow any mandates put forward by the government. Our consumption of hydrogen is very small compared to other hydrogen consumers in the state 	Weak	Strong
Other Comments	HOCL would like to remain a consumer of hydrogen and would not want to invest in gre consumption is limited. However, HOCL had an electrolyser set up in late 1990s which		given the

Primary Interview Summaries (IV/XIII)

KSRTC | Stakeholder Interview Responses

Decarbonisatio n goals	 KSRTC has deployed EV buses as a part of fleet decarbonisation. We do not have any targets set specific for green hydrogen powered buses 	Weak	Strong
Hydrogen use case	Currently hydrogen is not used as a fuel in any road transport operations. The use of green hydrogen in mobility would require investments in assets and infrastructure	Weak	Strong
Green H ₂ adoption plans	 We don't have defined plans for adoption of green hydrogen, discussions and ideations have happened in the past regarding the possibility of using green hydrogen powered buses 	Weak	Strong
Green H ₂ tech confidence	 Technology confidence would depend on addressing the challenges of refuelling infrastructure availability, progress in terms of pilots of different green hydrogen based technologies 	Weak	Strong
First offtake timelines	 KSRTC is willing to run pilots to test the financial and technical aspects of green hydrogen-based technologies given support from the government in terms of infrastructure and CAPEX. Currently there are no defined timelines 	Weak	Strong
Other Comments	 Around 3000 buses are available with KSRTC for replacement. Kochi-Trivandrum area with ~1000 buses. The northern regions are largely led by private operators 	a is where we have the	most coverage

Appendix Primary Interview Summaries (V/XIII)

	Kochi Metro operates feeder services connecting the metro with the other parts of the city. Currently 6 feeder buses and 75 e- Auto rickshaws operational in the city.
Kachi Pail	 There were plans for green hydrogen buses, obtaining buses on wet lease but the financials were not favorable at that time. Budget available was lower than the VGF calculated for the project
Kochi Rail Metro Limited	 KMRL has plans to set-up solar plants to decarbonise its operations. The metro has peak demands in the morning and evening peak hours
	 The distances in which the feeder services run are favorable for EV bus operations and hydrogen would not make sense. Kochi Metro is willing to evaluate opportunities in new and emerging fuels and with government support can look at running pilots
	 Kerala Transport Company has their own fleet of trucks that carry-out logistics operations in different cities in Kerala. There are two types of operations – line haul operations that run inter-city and delivery trucks that run the last mile
Kerala	The trucks operate an average of 200 kms and the average mileage of a 10 ton truck would be 5-6 Kms per litre
Transport Company	• KTC is willing to initiate conversations to understand the opportunities that are available in switching to green hydrogen
	 Important factors to consider would be the economic viability of using green hydrogen, the operational parameters like the refuelling time and the availability or reliable supply of green hydrogen to meet the demand

Primary Interview Summaries (VI/XIII)

KSINC | Stakeholder Interview Responses

Decarbonisation goals	 KSINC operates multiple vessel types. Currently there are no defined decarbonisation goals or plans for use of green hydrogen 	Weak	Strong
Hydrogen use case	There are no use cases for hydrogen currently in the operations of KSINC vessels	Weak	Strong
Green H ₂ adoption plans	 KSINC is the designated cargo operator for KMML in Kollam and with adequate support and studies on the financial and technical viability, KSINC can explore H₂ in barge operations 	Weak	Strong
Green H ₂ tech confidence	KSINC has not explored green hydrogen-based alternatives	Weak	Strong
First offtake timelines	 KSINC had plans to operate (diesel) barges from Kochi to KMML in Kollam. This is currently on hold as the route is still under development. Pilots can be done after proving viability of such operations 	Weak	Strong
Other Comments	 KSINC had initially looked at converting the barges into LNG but the plan did not go the would require 2 barges (Acid and Furnace Oil) 	rough. Meeting the demai	nd of KMML

Primary Interview Summaries (VII/XIII)

KWML | Stakeholder Interview Responses

Decarbonisatio n goals	 Kochi Water Metro currently operates hybrid EV boats that run on electricity with a back-up diesel generator. 	Weak	Strong
Hydrogen use case	Currently there is no use case for hydrogen in the water metro operations. Hydrogen powered fuel cell EV boats or hydrogen Internal combustion boats can be tested.	Weak	Strong
Green H ₂ adoption plans	 We had proposals for running green hydrogen powered fast ferries on the coastal route connecting the different metros (IMO wanted to promote 5 pilot projects in India and KWMLs project was one among them) 	Weak	Strong
Green H ₂ tech confidence	 Hydrogen purity required for fuel cells is very high, even for test runs with grey hydrogen the purity levels would require investments in systems. Availability of green hydrogen would also be a concern if not produced internally 	Weak	Strong
First offtake timelines	The proposals have not taken off so far. So no timelines set as of now	Weak	Strong
Other Comments	Cost of hydrogen and uninterrupted supply of green hydrogen would be the major cond	cerns for green hydrogen o	fftake

Source: Primary Interviews; MEC+ analysis

Primary Interview Summaries (VIII/XIII)

Stakeholder Interview Briefs

Kottayam Port	 Kottayam Port currently owns a 240-ton barge and have considered converting it into a hydrogen powered barge. But the cost economics was not favourable Currently operations of the port are halted due to some customs procedures and the port will start operations in the first half of 2024. Movement of goods from Kochi to Kottayam takes 7 hours and consumes 28 litres of fuel per hour We expect a 300-400 container demand on Kochi-Kottayam route, and we are willing to explore pilot operations with green hydrogen barges Govt. should incentivise water-based cargo movement as this can reduce congestion 	Not Willing for Pilots
KMML, Kollam	 on roads, pollution and in turn emissions KMML is currently dependent on road for movement of raw materials and fuels. Required 90 Kilo litre of Furnace Oil and 135 TPD of hydrochloric acid 	
	 KMML intends to move the transportation to waterways. KMML is developing a jetty currently and would be ready by March 2024 	
	 We are willing to explore the possibilities of green hydrogen based barges on the Kochi to KMML route based on the financial viability of such proposals and the government support available. Economic viability and availability of green hydrogen would be the major concerns 	Not Willing for Pilots Highly Willing for pilots
	 We have earmarked 10-15% of our productions for exports and this could also be transported through the waterways in the future 	

Primary Interview Summaries (IX/XIII)

Kerala State Water Transport Department	 Operations are limited to certain clusters and only passenger operations We have explored both CNG and solar boats in the past Long distance passenger transport may not be feasible due to the constraints in terms of speed Willing to explore H₂ based boats if adequate support in terms of CAPEX and infrastructure is provided
Kerala Maritime Board	 At present the smaller ports in Kerala are not operational as shipping is not viable. The availability of return cargo is a challenge in this regard. There are 1600 inland vessels in Kerala and all together there could be 3000+ vessels Our ambition is to shift 20% of the road traffic to waterways (coastal shipping) by 2030. Need government intervention to mitigate the problem of return cargo We can consider provision of land for refuelling stations – based on the proposal. Govt. can mandate government companies to use waterways to move cargo to boost the sector
Inland Waterways Authority of India	 There are three main routes that are operational currently in Kochi, Cochin Port to Ambalamghal, Cochin port to Udyogamandal and Udyogamandal to Ambalamughal Kochi to Kollam route is still under development, the Trikunnapuzha lock is under construction and will realistically be operational by March 2025 and by this time all the other minor work on the Kochi Kollam route will also be completed by then The route from Kottapuram to Kozhikode would be done at a later stage as the demand on this route is limited
Kerala Steamer Agents Association	 Challenges for inland waterways could be in the form of lack of clearances (low bridges), narrow stretches etc. Kochi Kottayam can have good cargo movement. Kollam ports needs alignment to handle bigger vessels On the coastal route, it is hard to find operators with viable proposals. KMB had tried to incentivize operators, but it did not go through. Need development of port infrastructure and government incentives for cargo movement through waterways Cargo movement through waterways can have challenges in the form of time delays and last mile deliveries, dispatchable trailers like in Netherlands can be tested in Kerala

Primary Interview Summaries (X/XIII)

CSL | Stakeholder Interview Responses

Hydrogen Business Case	 Cochin Shipyard builds vessels for both defense and commercial sectors. CSL is building a hydrogen powered vessel for IWAI (Varanasi) and for a Norwegian logistics company
Technology Readiness	 The vessel built for IWAI to be deployed in Varanasi is almost ready and will be tested in Kochi in the beginning of 2024 and then deployed at Varanasi
Confidence in hydrogen	 We have done research in developing hydrogen powered vessels. H₂ has potential in specific use cases where battery faces practical difficulties. CSL can build H₂ vessels for cargo requirements as well
Challenges Faced	 Availability of green hydrogen at a reasonable cost and uninterrupted supply will be the major challenges. Refuelling and transportation infrastructure will also need to be developed
Support Required	 Central government should promote use of hydrogen vessels in waterways with VGFs and grants, this can be complemented by state government incentives
Other Comments	 The vessels developed for Varanasi are 50 pax hydrogen Fuel Cell EV vessels planned for 8 hours of operation. Hydrogen Fuel cell vessels can be developed with higher fuel cell capacity to enhance range and load carrying capacities

263

Primary Interview Summaries (XI/XIII)

Air Products | Stakeholder Interview Responses

Hydrogen Business Case	 We invest, install, operate and supply hydrogen molecules in India and globally. We have business interests in green hydrogen. We have two hydrogen dispensing stations (in mobility) under Air Products India. Green Ammonia is the most feasible for transportation and we have global green ammonia supply projects as well
Technology Readiness	 Green Hydrogen can be produced. 1 ton/hour of green hydrogen would require ~60MW of RE, a 350-dispensing station. H₂ cylinder filling stations are currently not present
Confidence in hydrogen	 Spare hydrogen is present at BPCL facility, but Air Products is in a tolling agreement with BPCL and they have expansion plans as well.
Challenges Faced	 We are interested in supplying green hydrogen, but it would be commercially challenging. Offtake and business model is missing. We (in mobility) do not see business case for 5-10 buses. The hydrogen produced currently is not H₂ grade, would need purification (if plans are there to use grey hydrogen in testing stages)
Support Required	 Air Products are up for discussions with the stakeholders. Need clarity on the mode – whether it's a tender or a consortium, are the resources given by the government
Other Comments	 Long terms (5 to 10 years) offtake contracts can help kick-start the hydrogen production. If this is made possible Air Products can also initiate conversations with RE developers

Primary Interview Summaries (XII/XIII)

KPIT Technologies	 KPIT Technologies develop hydrogen fuel cells. KPIT is also into generation of hydrogen from biomass. We have two technologies currently biomass digestion from paddy straw fermentation and woodchips/bamboo gasification KPIT is partnering with Cochin Shipyard to develop hydrogen fuel cell electric vessels that comes with 40kg of hydrogen capacity (5 cylinders of 8 kg each). We believe fuel cells can be a good alternative for vessels where battery faces practical difficulties (based on the current technology levels) Current tanks are at 350 bar pressure and with the approval of new tanks with 700 bar pressure more hydrogen can be carried giving better ranges. This way we can also have longer range vessels operating in the Kerala waterways
n3e	 n3e is a SOPAN group company and intends to work in the global green hydrogen and derivatives ecosystem. With a focus in blending systems and refuelling infrastructure We have indigenously developed products like hydrogen refuelling stations, hydrogen storage solutions and hydrogen blending, we were also the EPC partners for a hydrogen refuelling station that was set up in Gujarat by Reliance Cost of refuelling stations will decrease by 30% in 2030 and by up to 50% in 2040. The refuelling stations would see better cost economics with increased utilisation rates. The costs of a 1 TPD plant at 20% utilisation would be double of that of a plant with 100% utilisation
Greenstat	 Greenstat is interested in demonstrating a zero-emission waterborne transport in Vembanad lake by modification of existing diesel powered houseboats to green hydrogen fuel cell powered We are in conversation with houseboat operators for tie-ups to demonstrate the technology. There is a potential for ~100 boats which will be powered by hydrogen from a local electrolyser (~0.5 MW) The houseboats can run on a 60 to 80 kW fuel cell. This could be a form of sustainable tourism as well but will require subsidies from the government
AG&P	 AG&P acknowledges the need for confirmatory studies before blending green H2 in API 5L grade steel pipelines. There is also a need for establishing mechanisms to monitor and regulate the extent of GH2 blends at varying Natural gas flow rates

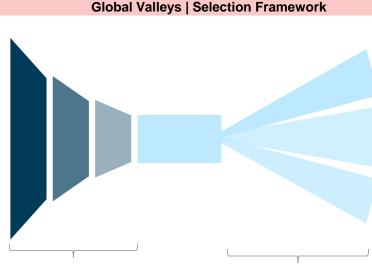
Primary Interview Summaries (XIII/XIII)

Vizhinjam International Seaport Ltd	 VISL is proactively involved in decarbonisation projects, we are planning a floating wave energy plant with IIT-M and American firms (in lab testing stages) and rooftop solar projects. Defunct waterbodies at ports can be used for floating solar
	• We have had discussions with international ports regarding the possibility of green ammonia production. Land is a constraint in the port and we are planning to acquire land within 2 km radius of the port
	 We are willing to explore opportunities for green ammonia bunkering in VISL to meet the demand that is expected to arise in the future as vessels will make the switch to green fuel alternatives
Adani Vizhinjam Port	 Adani Ports and SEZ is developing the deep-sea water port at Vizhinjam. Adani had announced interest in green fuel bunkering but cannot comment on this now. Details on whether we would produce green ammonia/derivatives or procure it is
	also not decided as of now
	• The port has floating crafts and ITVs that currently run on diesel. Floating crafts consume 200 to 250 thousand liters per month and ITVs consume 50 to 60,000 liters per month cumulatively
	For Green Fuel bunkering, land availability is a concern as liquid bunkering would require large land requirement
Trivandrum Airport	 Trivandrum Airport has 3000 to 4000 liters of diesel consumption across all applications (DG, Dewatering pumps, Airport vehicles). In total we have a demand of 10000 to 12000 litres per month of diesel across all airport inventories (all scopes)
	Currently have 16 Diesel Generators – 1010 kVA x 4 nos, 500 kVA x 6 nos and 125 kVA x 6 nos
	 Willing to explore alternatives for Diesel operated vehicles and DGs, technology availability is a concern. Need to understand the prospect of a hydrogen-based generator, the capex for a 1000 kVA hydrogen-based generator and its operational challenges

Selection of Global Valleys

To be based on qualification criteria and diversity parameters

Size of the Valley


 Total electrolyser size in the valley to be less than 1 GW as the Kochi Valley would also have a potential demand of 0.5 to 1 GW (approximate size)

Type of Demand

 Valley selected to have internal use cases as demand drivers.
 Valley can have multiple usecases and external demand (exports) could be one of them

Stage of Development

 Valley selected to be beyond the concept or feasibility study stage ideally in the construction stage or post-FID

Qualification

These parameters are to remain same for all the valleys considered. This includes the size of the valley, stage of the valley and the demand focus of the valley (internal vs external)

Diversification

These parameters vary across selected valleys, ensuring diverse use-case coverage and governance models.Also, this helps understand how some of the opportunities foreseen (industry cluster, port proximity etc) in Kochi can be leveraged

Valley Advantage

 Advantage in terms of availability of RE, raw materials for electrolyser manufacturing, proximity to ports, industrial clusters

Industry Focus

 Valleys considered are to have diverse set of use cases ranging between industrial use cases, mobility, power generation, exports etc

Governance Structure

 Valleys with diverse governance models are considered to understand the different roles that private and govt. bodies can play in the valley

5 valleys are selected

Selection Methodology

80+ valleys across geographies have been considered in the qualifying stage. The qualification stage consisted of three parameters:

- Electrolyser size envisioned in the valley (<1 GW)
- Major demand driver in the valley (Internal/Domestic)
- Stage of development in the valley (Post FID stage)

15 valleys qualified for stage 2 – diversification stage where these valleys were subjectively assessed on the following parameters:

- Industry coverage/Multiple use-cases
- Opportunities similar to Kochi in terms of proximity to ports, similar industrial clusters, emerging gas distribution pipelines etc
- Valleys with varied governance models with different levels
 of public-private participation

5 Valleys were selected: Hamburg Green Hydrogen Hub - Germany, HEAVENN – Netherlands, Basque Hydrogen Corridor – Spain, Green Hydrogen and Chemicals – Oman, Flemish Ports Hydrogen Valley - Belgium

Selected Global Valleys		
Hamburg Green Hydrogen Valley, Germany	Use cases in industries, mobility, heat and port. Active participation of private and public bodies. Decarbonisation of a port economy with green H_2	
HEAVENN, Netherlands	Leveraging local RE availability. Valley integrating multiple clusters. Association model of governance. Offtake demand from govt. in transport.	
Basque Hydrogen Corridor, Spain	Defined hydrogen Strategy in which this valley has a role. Multiple use-cases envisioned. Domestic driven demand. Leveraging existing infrastructure	
Green Hydrogen and Chemicals, Oman	Government led project. Leveraging abundant solar resources. Project with secured offtake. Green Hydrogen to Ammonia conversion focussed project	
Flemish Ports Hydrogen Valley, Belgium	Integration of 3 port clusters into a valley. Leveraging existing gas pipelines. Part of the National Hydrogen Policy Vision. Presence of multiple H_2 use cases	