Flexibility of new and optimized fossil fired Power Plants

VGB Flexibility Workshop – IGEF Study Tour 19.09.2016 Berlin

Axel Meschgbiz, Jörg Walter RWE Technology International

What does Flexibility mean?

High flexibility can be described as follow:

Dynamic

- > high operational gradient (load change speeds)
- > short start-up minimum and nominal load
- > short minimum downtime

Operational

- high starting number and load cycles at reduced Lifetime consumption
- lowest possible minimum load at high efficiency
- > uniform, high efficiency curve across the load

Load Change Rate between minimum and nominal load

Load Change Rate - Cold Start

Short Minimum Downtime

Current Design

	With <u>high</u> Life Time reduction	With <u>low</u> Life Time reduction
CCGT	<< 30 min run out of the GT is the time leader	
Hard Coal	min. 30 min	< 240 min
Lignite	min. 30 min	< 240 min
Pre-dried Lignite	min. 30 min	< 240 min

- > After command " fire off " measures must be carried out to bring the unit back into the " Ready " operating state. Hereby, the condition of the unit must be considered.
- > Time leader in coal firing is the pre-ventilation due to security.
- > Gentle cooling of the steam generator before air purging, which increases the life time but it is time-consuming. This measure avoids the temperature stresses.
- > Lifetime consumption is considered in the design of our plants.

Design Specifications new Power Plants Example: Westfalen

Operational Characteristics (Hard Coal, 800 MW)

- > Base and medium load
- > Plant runs through in times of low demand
- > Minimum load 25 30%, 7,500 operation hours per year

peration Mode		Per year	40 years
	Cold Starts	6	240
	Warm Starts	42	1,680
	Hot Starts	84	3,360
	Load Cycles	1,200	48,000

Future design priorities

The prioritization is based on the value of flexibility!

Potentials to increase the Flexibility

Plant	CCGT	Coal fired
Operating gradient	Potential ± 7 %	Potential ± 6 %
Measures	Wall thickness reductionOnce through steam generator	 Separation of milling and combustion process Wall thickness reduction Matched components design
Minimum Load	Potential approx. 0% load	Potential approx. 20% load
Measures	NOx- CatalysatorPost-combustion of CO	 Increasing the number of mills Improving the milling process

Flexibility improvement by Optimizing the Power Plant Portfolio - Example Combi Unit (Gas + GT)

Existing Unit

- > Only steam turbine Controlled (GT drives at nominal load, 55 MW)
- > From > 150 MW operating gradient about 40 MW / min.
- > Full flexibility of the Plant is not accessed today from the dispatcher, although the plant is in the secondary control mode

Modernisation

 Replacement of the V93 turbines by 2 Trent aero derivative turbines allows higher gradient

I&C Optimisation makes modern Power Plants even faster

Lingen CCGT (875 MW)

Increase in start-up gradient
 4 MW/min → 12 MW/min

Neurath lignite-fired plant (600 MW)

- > Reduction in minimum load of 20%-points
- Increase in load change rate
 5 MW/min → 15 MW/min

New advanced Materials allow Increase in Flexibility or Efficiency

Efficiency development of lignite-fired plants

R&D Activities related to Flexibility Increase

- > New materials for thin-walled flexible components
- New measurement methods and IT based monitoring to assess the life consumption to avoid damage of highly stressed components
- > Predictive Maintenance: monitoring of components using Big Data
- Temporary electricity storage, when the produced electricity from conventional power plants is not required
- New combustion systems for lignite based dry lignite in order to increase the flexibility

THANK YOU VERY MUCH FOR YOUR ATTENTION

